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Abstract
Genetic structure in host species is often used to predict disease spread. However, 
host and pathogen genetic variation may be incongruent. Understanding landscape 
factors that have either concordant or divergent influence on host and pathogen ge-
netic structure is crucial for wildlife disease management. Devil facial tumour dis-
ease (DFTD) was first observed in 1996 and has spread throughout almost the entire 
Tasmanian devil geographic range, causing dramatic population declines. Whereas 
DFTD is predominantly spread via biting among adults, devils typically disperse as 
juveniles, which experience low DFTD prevalence. Thus, we predicted little associa-
tion between devil and tumour population structure and that environmental factors 
influencing gene flow differ between devils and tumours. We employed a compara-
tive landscape genetics framework to test the influence of environmental factors on 
patterns of isolation by resistance (IBR) and isolation by environment (IBE) in dev-
ils and DFTD. Although we found evidence for broad-scale costructuring between 
devils and tumours, we found no relationship between host and tumour individual 
genetic distances. Further, the factors driving the spatial distribution of genetic vari-
ation differed for each. Devils exhibited a strong IBR pattern driven by major roads, 
with no evidence of IBE. By contrast, tumours showed little evidence for IBR and a 
weak IBE pattern with respect to elevation in one of two tumour clusters we identify 
herein. Our results warrant caution when inferring pathogen spread using host popu-
lation genetic structure and suggest that reliance on environmental barriers to host 
connectivity may be ineffective for managing the spread of wildlife diseases. Our 
findings demonstrate the utility of comparative landscape genetics for identifying 
differential factors driving host dispersal and pathogen transmission.
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1  | INTRODUC TION

Infectious diseases are a major driver of wildlife population dynam-
ics and can contribute to extinction (De Castro & Bolker, 2005). 
Thus, considerable effort is devoted to detecting diseases and 
identifying the processes influencing their transmission and spread. 
Traditional epidemiological approaches rely on direct estimates of 
disease prevalence, host movement and host contact rates for model 
parameterization, but these estimates are logistically challenging to 
obtain from wildlife populations (Craft, 2015; Craft, Volz, Packer, 
& Meyers, 2009; Hamede, Bashford, McCallum, & Jones, 2009). 
Further, there is often uncertainty as to whether observed contacts 
and movements reflect actual pathogen transmission and spread 
(Craft, 2015). In contrast, the spatial distribution of genetic varia-
tion contains signatures of past dispersal (in the case of the host) 
or spread (in the case of the pathogen) and often can be linked with 
environmental or ecological factors at fine spatial scales (Archie, 
Luikart, & Ezenwa, 2009; Biek & Real, 2010; Blanchong, Robinson, 
Samuel, & Foster, 2016; Hemming-Schroeder, Lo, Salazar, Puente, & 
Yan, 2018; Kozakiewicz et al., 2018). Knowledge of these relation-
ships is critical to predicting the spread of wildlife diseases and can 
inform management strategies aimed at mitigating their impact.

Spatial patterns of genetic variation are routinely used to un-
derstand patterns of connectivity and movement in wildlife, and 
a number of studies have extended this framework for predicting 
the spread of wildlife diseases resulting from host movement. For 
example, estimates of host genetic variation have been used to ex-
plain and forecast the prevalence and distribution of pathogens (e.g. 
Blanchong et al., 2008; Guivier et al., 2011; Robinson, Samuel, Rolley, 
& Shelton, 2013), and the transmission potential of different host 
species (e.g. Paquette, Talbot, Garant, Mainguy, & Pelletier, 2014; 
Vander Wal et al., 2013) or of different sexes within species (e.g. 
Cote, Garant, Robert, Mainguy, & Pelletier, 2012; Talbot, Garant, 
Paquette, Mainguy, & Pelletier, 2012), and to improve the predic-
tive power of models of disease spread (e.g. Davy, Martinez-Nunez, 
Willis, & Good, 2015; Kozakiewicz et al., 2018; Robinson et al., 2013; 
Wilder, Kunz, & Sorenson, 2015). However, pathogen genetic struc-
ture does not necessarily reflect that of the host, and pathogen 
transmission may be disconnected from patterns of host gene flow. 
Such a disconnect may be due to factors including multiple host/
vector species, pathogen persistence in environmental reservoirs, 
transmission via nonreproducing hosts or host life history charac-
teristics resulting in reduced susceptibility at dispersal age (Mazé-
Guilmo, Blanchet, Mccoy, & Loot, 2016; Talbot, Vonhof, Broders, 
Fenton, & Keyghobadi, 2017). Therefore, comparative approaches, 
ideally incorporating the relative influence of environmental or eco-
logical factors, are necessary for understanding the extent to which 
host and pathogen genetic structure are related and to disentangle 

the factors influencing each. One approach that is ideally suited for 
the comparative study of host and pathogen genetic variation is 
landscape genetics.

Landscape genetics is an analytical framework for testing the in-
fluence of environmental heterogeneity on patterns of gene flow and 
population genetic structure (Manel & Holderegger, 2013; Manel, 
Schwartz, Luikart, & Taberlet, 2003; Storfer et al., 2007). Most land-
scape genetics studies have focused on single species, but there are 
a growing number of comparative, multispecies studies (e.g. Cleary, 
Waits, & Finegan, 2017; Goldberg & Waits, 2010; Petren, Grant, 
Grant, & Keller, 2005; Trumbo, Spear, Baumsteiger, & Storfer, 2013; 
Zancolli, Rödel, Steffan-Dewenter, & Storfer, 2014). Even fewer 
multispecies studies have employed landscape genetics methods 
to study the dynamics of infectious diseases in wildlife systems 
(Biek & Real, 2010; Hemming-Schroeder et al., 2018; Kozakiewicz 
et al., 2018). Such comparative landscape genetics frameworks can 
provide valuable insights into how host–pathogen interactions shape 
patterns of disease transmission and spread across heterogeneous 
landscapes (Leo, Gonzalez, Millien, & Cristescu, 2016; Schwabl 
et al., 2017; Talbot et al., 2017).

Tasmanian devils (Sarcophilus harrisii) and their transmissible can-
cer provide a highly appropriate study system to test for host–patho-
gen costructuring in a comparative landscape genetics framework. 
In 1996, devil facial tumour disease (DFTD) was discovered in north-
eastern Tasmania, Australia. DFTD is one of only a few documented 
transmissible cancers (Metzger & Goff, 2016; Ostrander, Davis, & 
Ostrander, 2016; Storfer et al., 2017) and, since its emergence, has 
spread across almost the entire geographic range of the Tasmanian 
devil (Save the Tasmanian Devil Programme, 2019) (Figure 1). With 
a nearly 100% mortality rate, DFTD has caused an estimated 80% 
population decline across the species range, with localized declines 
exceeding 90% (Lazenby et al., 2018; McCallum et al., 2007).

Devil facial tumours are transmitted as an allograft through bit-
ing, a common occurrence during social interactions among devils 
(Hamede, Mccallum, & Jones, 2013; Hamilton et al., 2019). Direct 
transmission of DFTD among devils means that its spatial spread 
is inextricably tied to the movements of devils—a relationship that 
leads to the assumption of genetic costructuring among host and 
pathogen (Criscione, 2008; Jarne & Théron, 2001; Mazé-Guilmo 
et al., 2016). Yet, for costructuring to occur, pathogen dispersal 
must be synchronized with host dispersal and subsequent repro-
duction. In other words, individuals must disperse while infected 
and reproduce thereafter. This requirement has been identified 
previously but is often overlooked in studies that use host move-
ments to predict disease spread. In devils, gene flow typically oc-
curs through individuals that dispersed away from their natal sites 
as juveniles, whereas DFTD transmission occurs primarily during the 
adult life stage. Juvenile dispersal is likely to take place over greater 

K E Y W O R D S
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distances than the typical movements of adult devils because adults 
maintain high fidelity to their established home ranges, which are 
typically 5–30 km2 (Lachish, Miller, Storfer, Goldizen, & Jones, 2011; 
Pemberton, 1990). Yet, genetic spatial autocorrelation distances are 
up to 100 km in eastern Tasmania (Lachish et al., 2011) and 60 km 
in western Tasmania (Storfer et al., 2017). On this basis, we would 
hypothesize that costructuring among devils and tumours is weak 
and that devil gene flow should be less geographically constrained 
than the spread of DFTD.

An alternative hypothesis is that DFTD disperses more rapidly 
and shows less genetic structure than devils because opportunities 
for transmission occur more frequently than devil reproduction. 
That is, whereas the biting contacts required for DFTD transmission 
are a common social behaviour occurring throughout the year (albeit 
more frequently during the mating season), devils generally mate 
between February and May (Hamede et al., 2009, 2013; Hamilton 
et al., 2019). Furthermore, the potential effect of a single dispersing 
individual on genetic structure is less in devils than in tumours. This 
is because a single tumour may proliferate into a large, clonal lineage 
that dramatically shifts the overall genetic structure of tumours in 
its new population. High mobility of DFTD tumours is supported 
by the fact that DFTD has spread from the northeastern corner of 
Tasmania to the west coast of Tasmania in just over 20 years (Epstein 
et al., 2016; Storfer et al., 2017; Figure 1). It is unclear which of these 

competing hypotheses is best supported, exemplifying the need 
to understand the extent to which host and pathogen movements 
are linked and whether they are subject to the same environmental 
constraints.

Herein, we employ a comparative landscape genetics framework 
to test these competing hypotheses. Specifically, we test whether 
Tasmanian devil population structure predicts DFTD tumour pop-
ulation structure and whether host gene flow and pathogen spread 
are dictated by distinct environmental factors. We use 6,478 SNPs in 
devils and 1,595 SNPs in tumours genotyped using RAD capture (Ali 
et al., 2016; Margres et al., 2018) to reveal broad-scale population 
structure and fine-scale patterns of genetic variation. Individual-
level estimates of genetic variation were analysed using complemen-
tary landscape genetics approaches to investigate the relative roles 
of isolation by environment (IBE) and isolation by resistance (IBR) 
in influencing genetic structure in both devils and DFTD. In short, 
IBE occurs due to the environment at sample locations, whereas 
IBR occurs due to the environment intervening sample locations. 
IBR approaches allow us to quantify how environmental hetero-
geneity across entire landscapes can affect functional connectiv-
ity (McRae, 2006), and distinguish these effects from the classical 
isolation-by-distance model (IBD; Wright, 1943). In contrast, IBE 
describes the effect of divergent environments on genetic differen-
tiation (Wang & Bradburd, 2014) and can occur for various reasons, 
including population-specific adaptation to local environmental con-
ditions (and thus maladaptation of and selection against migrants) or 
natal habitat preference induction leading to habitat-biased disper-
sal (Wang & Bradburd, 2014).

2  | METHODS

2.1 | Study system

Tasmanian devils are carnivorous marsupials endemic to the island of 
Tasmania, Australia, where they are apex predators. Tasmania com-
prises a total land mass of 68,401 km2 and encompasses a dramatic 
east-to-west climatic gradient and a high degree of topographic varia-
bility. Devils prefer eucalypt and sclerophyll forests and coastal scrub 
lands, but they can also be found near to human developments and ag-
ricultural land (Guiler, 1970; Hawkins et al., 2006; James et al., 2019). 
Previous work indicates up to six genetic populations island-wide, 
including a clear distinction between individuals sampled from north-
western Tasmania and those from elsewhere on the island (Brüniche-
Olsen, Jones, Austin, Burridge, & Holland, 2014; Fraik et al., 2020; 
Hendricks et al., 2017; Miller et al., 2011; Storfer et al., 2017). The 
cause of this east-to-west spatial genetic heterogeneity remains un-
clear, with previous landscape genetics work implementing least-cost 
path modelling and microsatellite loci unable to identify any land-
scape factors driving this variation (Storfer et al., 2017).

The transmissible tumour first identified in 1996 is now pres-
ent across nearly the entire devil geographic range, with all extant 

F I G U R E  1   The spread of DFTD across the island of Tasmania, 
with the approximate disease front over time depicted as red lines 
labelled by year. The site of the first documented case of DFTD is 
identified by the red circle. The 12,000-km2 study area is shown 
within the box, with Narawntapu National Park (NNP) and West 
Pencil Pine (WPP) indicated

100 km

2000
20052010

20152019
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cases having a common origin. However, in 2014, a second trans-
missible cancer of devils, devil facial tumour disease 2 (DFT2), was 
discovered in southern Tasmania, independent in origin from the 
first (Pye et al., 2016). DFT2 remains geographically restricted; 
yet, insights gained into the transmission of the first tumour may 
help inform the management of DFT2 and any subsequent trans-
missible tumours, as well as other directly transmitted diseases. 
Herein, we focus on the first tumour, to which we refer exclusively 

in this study as “DFTD” or “tumours,” with any references to the 
second tumour, DFT2, specified as such. No cases of DFT2 were 
included in this study.

DFTD infection is typically observed in adult devils, most likely 
due to limited injurious biting contact until adulthood (Hamede 
et al., 2013) and changes in immune system function at sexual 
maturity (Cheng et al., 2017). Nonetheless, tumours are occasion-
ally observed in juveniles, with a long latent period likely biasing 

F I G U R E  2   Spatial distribution of population genetic structure in (A) Tasmanian devils and (B) DFTD tumours. For devils, relative 
STRUCTURE assignment probabilities for K = 2 genetic clusters are depicted as pie charts. For tumours, genetic clusters as determined by 
combined STRUCTURE analysis and DAPC are depicted, with samples for which analyses were incongruent shown as being of ambiguous 
cluster assignment

0 20 4010 km
(a)

0 20 4010 km
(b)

Devil
Tumor cluster 1
Tumor cluster 2
Tumor ambig. clust.
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detectability towards adults (Hamede et al., 2013, 2015; Lazenby 
et al., 2018). DFTD replicates clonally, with no evidence of recom-
bination among tumours. However, cancer lineages accumulate 
somatic mutations over time, thus generating genetic differences 
among locations that reflect how a given lineage has spread spa-
tially (Murchison et al., 2012; Schwartz & Schäffer, 2017; Stammnitz 
et al., 2018). Therefore, characterization of DFTD genetic structure 
enables us to infer how it has spread among devil populations with 
respect to geographic and environmental factors.

2.2 | Sample collection

We collected georeferenced Tasmanian devil ear and tumour tissue 
samples using a 3-mm biopsy punch from wild devils over a 12-year 
period. A detailed description of field trapping protocols can be 
found in Hawkins et al. (2006) and Hamede et al. (2015). Two hun-
dred and seventeen devil samples and 177 tumour samples, of which 
87 were paired samples with both tumour and host tissues taken 
from the same individual, were collected from an approximately 
12,000-km2 area in northwest Tasmania between 2004 and 2016 
(Figures 1 and 2). We focused on this area because it contains a high 
degree of environmental and topographic variation and overlaps 
with a broad-scale genetic discontinuity among devil populations 
identified in previous studies (Brüniche-Olsen et al., 2014; Hendricks 
et al., 2017; Miller et al., 2011; Storfer et al., 2017), suggesting po-
tential environmental/landscape constraints on devil movements. 
Sampling across this region was relatively consistent throughout the 
sample period and coincided with the arrival and spread of DFTD in 
this region (Figure 1).

2.3 | RAD-capture array

We used a restriction site-associated DNA (RAD)-capture (i.e. 
“Rapture”) array (Ali et al., 2016) to target loci across the devil and 
tumour genome. The capture array was developed from RAD se-
quencing of 360 devils (Epstein et al., 2016); 15,898 of the 90,000 
RAD loci from this earlier study were used to make a targeted array 
using the myBaits for high-throughput population genomics stud-
ies kit (Arbor Biosciences, Ann Arbor, MI) as described in Margres 
et al. (2018). Targeted loci met one or more of the following criteria: 
(a) genotyped in ≥ 50% of individuals, contained ≤ 3 nonsingleton 
SNPs with a minor allele frequency (MAF) ≥ 0.05 and was ≥ 20 kb 
away from other targeted loci to increase genome coverage (7,108 
loci); (b) located within 50 kb of an immune-related gene, with ≤ 4 
nonsingleton SNPs and genotyped in ≥ 67% of the individuals (6,315 
loci); and (c) showing some preliminary evidence of association with 
DFTD susceptibility and having ≤ 5 nonsingleton SNPs (3,316 loci).

Because the myBaits array was developed for devils and not 
DFTD, we tested whether the array could successfully capture 
RAD loci from tumour samples by aligning whole-genome tumour 
samples (sequenced at 90x coverage; from Margres et al., 2020) to 

the devil reference genome (downloaded from Ensembl June 2014; 
Murchison et al., 2012) using Burrows–Wheeler Aligner v0.7.12 (op-
tion MEM; Li & Durbin, 2009). We measured tumour coverage across 
each Rapture region using Bedtools v2.27.0 (Quinlan & Hall, 2010). 
Only 10 genomic regions covered on the capture array showed low 
coverage (< 10x), illustrating that 99.9% of the baits should capture 
tumour DNA.

2.4 | Sequencing and data processing

We extracted DNA from tissue biopsies using the Qiagen DNeasy 
Blood & Tissue Kit, doubling the recommended amount of protein-
ase K to maximize lysis efficiency. DNA was digested using the Pst1 
restriction enzyme, and the RAD-capture libraries were sequenced 
on an Illumina HiSeq 4,000 at the Genomics Sequencing Laboratory 
at the University of California, Berkeley. We processed the raw data 
as previously described (Margres et al., 2018). Briefly, reads were 
demultiplexed, and low-quality reads and potential PCR duplicates 
were removed using Stacks v1.21 (Catchen, Hohenlohe, Bassham, 
Amores, & Cresko, 2013). Reads were then aligned to the reference 
genome using bowtie2 v2.3.4 (Langmead & Salzberg, 2012) with the 
--sensitive, --end-to-end and -X 900 settings.

2.5 | Variant calling

To identify variants, we used HaplotypeCaller in GATK v3.8 
(DePristo et al., 2011; McKenna et al., 2010), with devils and tu-
mours genotyped separately. For each, we removed SNPs and indels 
matching any of the following criteria: quality by depth < 2.0, strand 
bias Phred-scaled p-value > 60.0, root mean square of the mapping 
quality < 40.0, mapping quality rank sum test approximation of 12.5 
and a read position rank sum test approximation of eight.

We removed nontargeted regions from the data set using 
Bcftools isec (Li, 2011), followed by removal of SNPs with a minimum 
depth < 5, minimum genotype quality < 25, missing data > 50% and 
MAF < 0.01 using VCFtools v0.1.15 (Danecek et al., 2011). Then, to 
identify tumour-specific somatic SNPs and account for possible host 
contamination during tumour biopsy, we again used Bcftools isec to 
remove any SNP in the tumour data set that was also identified in the 
host samples. Following filtering, we retained 6,478 devil and 1,595 
tumour SNPs for analysis.

2.6 | Population structure

We investigated both host and tumour population genetic struc-
ture using two complementary approaches, following best prac-
tices recommended by Janes et al. (2017). First, we performed a 
discriminant analysis of principal components (DAPC) using ade-
genet (Jombart, 2008) in R version 3.6.3 (R Development Core 
Team, 2013). Briefly, we used the find.clusters function to perform 
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k-means estimation of the best-fit number of genetic clusters (K) as 
determined by the Bayesian information criterion (BIC), followed 
by the DAPC function to estimate probabilities of membership to 
each cluster for each tumour sample. Second, we evaluated popu-
lation structure using STRUCTURE v2.3.4 (Pritchard, Stephens, & 
Donnelly, 2000). We tested all values of K between 1 and 5, per-
forming ten replicate runs per K. Each run comprised 1,000,000 
Markov chain Monte Carlo iterations following a burn-in of 50,000 
iterations. Although STRUCTURE is inappropriate for clonal popula-
tions, we performed this analysis for tumours to maintain consist-
ency with the host analysis and to complement the more suitable 
DAPC. Because there are no recorded observations of recombi-
nation among tumours, we specified the admixture-free model in 
STRUCTURE. The most likely K was determined using ΔK accord-
ing to the Evanno method (Evanno, Regnaut, & Goudet, 2005), im-
plemented in STRUCTURE HARVESTER (Earl & VonHoldt, 2012; 
Van Rossum & Drake Jr, 1995), and assessment of mean estimated 
natural logarithm of the probability of the data [LnPr(X|K)] values. 
To identify possible hierarchical population structure, we repeated 
analyses of population structure on individual genetic clusters iden-
tified in initial runs until no further additional genetic clusters were 
identified.

Due to lack of recombination among tumours, we interpreted 
genetically distinct clusters of tumour samples as discrete, nonrec-
ombining groups. To ensure confidence in the identified clusters, 
we assigned tumours to a genetic cluster only where DAPC and 
STRUCTURE assignments were concordant. We excluded tumour 
samples with ambiguous assignment from any analysis pertaining 
to a specific cluster. Once tumour clusters had been identified, we 
performed an analysis of molecular variance (AMOVA; Excoffier, 
Smouse, & Quattro, 1992) to quantify the proportion of overall ge-
netic variance explained by differentiation between clusters relative 
to that explained by variation among and within individual tumours. 
AMOVA was performed using the poppr package in R (Kamvar, 
Tabima, & Grünwald, 2014) and significance determined using a ran-
domization test with 100 permutations, which was performed using 
ade4 (Dray & Dufour, 2007).

We tested for genetic costructuring among paired devil–tumour 
samples using two approaches. First, we conducted a Mantel test 
comparing host genetic distances and tumour genetic distances. 
Individual genetic distances were calculated as 1 – Dps, where Dps is 
the proportion of shared alleles between paired samples, using ade-
genet. Second, we fitted a logistic regression to determine whether 
STRUCTURE assignment probabilities for hosts were predictive of 
the genetic cluster to which a given host's tumour was assigned. We 
also used a logistic regression to determine whether sample date 
was predictive of the genetic cluster of each tumour.

2.7 | Landscape genetics

We conducted landscape genetics analyses to identify how envi-
ronmental factors influence patterns of devil and tumour genetic 

structure within both IBR and IBE frameworks. All landscape ge-
netics analyses were conducted separately for host and tumour. In 
addition to analysing all tumours together, we also conducted land-
scape genetics analyses separately for each of the identified tumour 
clusters (as identified by the above-described population genetic ap-
proaches) to account for differences in environmental associations 
among clusters.

We selected six continuous and two categorical variables to test 
in our landscape genetics analyses based on habitat preferences 
observed through prior devil mark–recapture studies (Guiler, 1970; 
Hawkins et al., 2006), radio-collaring studies (M.E. Jones, unpub-
lished data) and a previous landscape genetics study of Tasmanian 
devils (Storfer et al., 2017). The continuous variables comprised el-
evation, elevation relief ratio (a measure of relative altitudinal relief 
between two points; Pike & Wilson, 1971), annual mean tempera-
ture, temperature annual range (the difference between the average 
24-hr maximum temperature of the hottest month and the average 
24-hr minimum temperature of the coldest month), annual precipi-
tation and precipitation seasonality (the coefficient of precipitation 
variation; Feng, Porporato, & Rodriguez-Iturbe, 2013). Categorical 
variables were land cover type and roads. Land cover types were 
derived from the TASVEG 3.0 vegetation communities data set 
(DPIPWE, 2013) and partitioned according to the ten broad vegeta-
tion categories defined by TASVEG 3.0, with agriculture and urban 
areas/exotic vegetation forming a further two categories. Roads 
data were downloaded from Geoscience Australia (data.gov.au) and 
classified as principal, secondary and minor roads, to which we refer 
as highways, major roads and minor roads, respectively. Elevation 
data were downloaded from Geoscience Australia, and elevation re-
lief ratio was calculated from the elevation data using the raster cal-
culator in ArcGIS v10.7 (ESRI, 2011). Climatic data were downloaded 
from WorldClim v2 (Fick & Hijmans, 2017). We assessed multicol-
linearity among environmental rasters using variance inflation fac-
tors (VIF), retaining only variables with VIF < 10 (Table S1). Annual 
mean temperature had a VIF score exceeding this threshold and was 
subsequently removed from all analyses.

Pairwise individual genetic distances were interpreted for devils 
and tumours as a relative proxy for genetic connectivity and used as 
a response variable for landscape genetics analyses.

2.7.1 | Isolation by resistance: effects of landscape 
heterogeneity intervening sites

We tested for effects of landscape variables on genetic con-
nectivity in an IBR framework using the R package ResistanceGA 
(Peterman, 2018). ResistanceGA optimizes the correlation be-
tween genetic distances and resistance surface cost values by 
using a genetic algorithm to explore potential resistance surface 
parameterizations for each landscape variable. Resistance surface 
optimization approaches avoid the need to a priori assign costs 
to environmental variables through expert opinion or species dis-
tribution and habitat suitability models, which can be difficult to 
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translate to numerical values of resistance to movement (Elliot, 
Cushman, Macdonald, & Loveridge, 2014; Spear, Balkenhol, Fortin, 
McRae, & Scribner, 2010). In contrast to least-cost path model-
ling, which considers only a single optimal dispersal pathway with 
respect to a heterogeneous landscape factor of interest (thus 
assuming that individuals have complete knowledge of the land-
scape), IBR analytical frameworks that implement circuit theory 
can account for all possible dispersal pathways in predicting rates 
of gene flow (McRae, 2006).

We optimized resistance surfaces singly for each environmental 
variable based on random-walk commute time between locations 
(van Etten, 2017). In brief, the genetic algorithm used for optimi-
zation comprised a randomly generated population of individuals 
possessing parameters with randomly chosen values that determine 
which of a variety of transformations is applied to the resistance sur-
face, the shape of the transformation and the maximum resistance 
value (Peterman, 2018). Thus, each simulated individual represents 
a uniquely parameterized resistance surface. Across each resistance 
surface (i.e. per simulated individual), pairwise commute times are 
calculated and evaluated against the true pairwise genetic distances 
using a linear mixed-effect model with maximum-likelihood popu-
lation effects (MLPE), which accounts for nonindependence among 
pairwise samples (Clarke, Rothery, & Raybould, 2002; Van Strien, 
Keller, & Holderegger, 2012). Model support or “fitness” of each 
simulated individual is determined using log-likelihood, with those 
achieving the highest log-likelihood allowed to “reproduce” to form 
a population comprising the next generation of the algorithm. This 
new population inherits the parameters from the previous genera-
tion (while allowing for random mutation and recombination of the 
parameters), and the process repeats itself through a number of sub-
sequent generations. For each landscape variable, we specified that 
25 generations must pass with no improvement to the MLPE model 
log-likelihood for a resistance surface to be identified as optimal. 
Following optimization, to test the relative support of each environ-
mental variable as a predictor of genetic distance, we used the final 
optimized surfaces to again generate commute times and fit MLPE 
models, calculated without restricted maximum likelihood (REML) 
and bootstrapped for 1,000 iterations with 90% subsampling. We 
ranked environmental variables by average AICC scores across all 
bootstrap iterations.

2.7.2 | Isolation by environment: 
effects of environmental differentiation on genetic 
differentiation

To investigate the extent to which genetic differentiation in hosts 
and tumours is influenced by patterns of IBE, we used generalized 
dissimilarity modelling (GDM) as implemented in the R package gdm 
(Fitzpatrick & Keller, 2015). Originally designed for community-level 
modelling of species turnover, GDM performs linear regressions to 
test associations between dissimilarity and distance matrices, but 
fits i-spline functions to allow for nonlinear responses and controls 

for geographic distance among sample locations (Ferrier, Manion, 
Elith, & Richardson, 2007). GDM assumes ordered categorical or 
continuous predictor variables (Ferrier et al., 2007), so we included 
only elevation, elevation relief ratio and our climatic variables in this 
analysis. Environmental variables were measured as the mean value 
within a 15-km2 buffer around each sample location, approximat-
ing a typical devil home range (M.E. Jones, unpublished data). We 
used matrix permutation (500 permutations with 90% subsampling 
of both sites and site-pairs) with backward elimination to evaluate 
model and variable significance and estimate variable importance 
(Fitzpatrick & Keller, 2015). During each iteration of the backward 
elimination procedure, the least important variable was removed, 
and variable importance and significance recalculated for the new 
model. As nonexplanatory (i.e. the least important) variables were 
removed, the per cent deviance explained by each successive model 
relative to the null did not change. Only as explanatory variables 
were removed did the per cent deviance explained drop. Thus, the 
top model was identified as the model with the highest deviance 
explained and containing the fewest variables. Variable importance 
was calculated as the per cent change in model deviance upon per-
mutation of the given variable. Geographic distance was included as 
a control in all models and was not subject to backward elimination.

In addition to the host, all-tumour and tumour cluster-specific 
tumour analyses, to compare the relative effects of host genetic 
variation and environmental variables on tumour genetic differenti-
ation, we performed a separate GDM analysis of tumours for which 
the corresponding host devils were genotyped. For this analysis, the 
same environmental variables were included as above, with the ad-
dition of host genetic distances.

3  | RESULTS

3.1 | Host and pathogen population structure

Analysis of devil population genetic structure using DAPC suggested 
the most likely number of genetic clusters was K = 2, according to 
the BIC support. However, ∆BIC did not exceed 2 for either K = 1 or 
K = 2 (Figure S1), suggesting that patterns of population structure 
were difficult to resolve with our data (Burnham & Anderson, 2002). 
Similarly, STRUCTURE provided the most support for K = 2 as de-
termined by ΔK calculated using the Evanno method. Although the 
Evanno method is unable to evaluate K = 1 and thus cannot exclude 
it as a potential solution (Janes et al., 2017), K = 1 was the least 
supported solution according to mean LnPr(X|K), supporting the 
existence of multiple genetic clusters. Further, mean LnPr(X|K) val-
ues supported successively higher values of K (Table 1), indicating 
a potential genetic cline. However, there was also greater variation 
in LnPr(X|K) among iterations at higher values of K (Table 1), sug-
gesting some uncertainty. Further analysis of hierarchical structure 
within the initial K = 2 clusters did not provide clear evidence for 
any further genetic clusters for DAPC, yet STRUCTURE again sup-
ported successively higher values of K according to LnPr(X|K). Thus, 
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3224  |     KOZAKIEWICZ Et Al.

for devils, we settled on K = 2 as representing opposite ends of a 
genetic cline. Accordingly, these clusters were not geographically 
discrete, with individual assignment probabilities indicating a con-
tinuous longitudinal admixture gradient (Figures 2 and 3).

In tumours, DAPC and STRUCTURE both supported two ge-
netic clusters (Table 1, Figure S1). However, LnPr(X|K) was higher for 
STRUCTURE runs at K = 4 but, similar to devils, with greater variation 
among iterations. Subsequent DAPC and STRUCTURE runs showed 
no evidence of hierarchical population structure in tumours. Of the 
177 tumours, 147 had cluster assignments that were supported by 
both DAPC and STRUCTURE at K = 2, with 30 tumours ambiguously 
assigned. Hereafter, we refer to the two identified tumour clusters 
as tumour cluster 1 (n = 74) and tumour cluster 2 (n = 73). There 
was no clear geographic structure among these clusters, with almost 
complete spatial overlap. However, we did observe a slight predomi-
nance of tumour cluster 2 towards the eastern end of the study area 
(Figures 2, 3). AMOVA revealed significant genetic variance attrib-
utable to the identified tumour clusters, which explained 6.48% of 
variation (p = .01) compared to minimal (1.58%; p = .23) variation 
attributable to among-tumour variation within clusters (Table S2). 
Variation within individual tumours comprised 91.94% of overall ge-
netic variation (p = .04). This is due to somatic mutation in cancers 
producing high rates of heterozygosity.

3.2 | Tasmanian devils and DFTD are weakly 
costructured

Our STRUCTURE results provide some evidence for host–tumour 
costructuring along a longitudinal gradient (Figures 2, 3). Logistic re-
gression revealed that tumour cluster identity was predicted by devil 

population structure (LRT = 5.81; p = .016; Figure 4a) but not sam-
pling date (LRT = 1.74; p = .19), suggesting cocirculating tumour clus-
ters that broadly costructure with host populations. However, when 
comparing host and tumour genetic distances directly, we found no 
correlation (Mantel r = −0.10, p = .92; Figure 4b). Further, host ge-
netic distances performed worse than environmental differences in 
predicting tumour genetic differentiation (see below landscape ge-
netics analyses). Mean genetic distances were greater among devils 
(0.30, SD = 0.025) than among tumours (0.14, SD = 0.035).

3.3 | Landscape factors more strongly affect spatial 
genetic variation in devils than DFTD

3.3.1 | Isolation by resistance: effects of landscape 
heterogeneity intervening sites

In devils, landscape heterogeneity intervening sites explained sub-
stantial variation in gene flow. Although geographic distance was 
most frequently the top model (52.7% of bootstrap iterations) and ex-
plained 24.9% of genetic variation among devils, it had relatively low 
mean AICc support across bootstraps (mean ΔAICc = 5.97; Table 2). 
Roads as a barrier to gene flow had the highest average support of all 
models and was the top model in 38.4% of bootstrap iterations, ex-
plaining 37.9% of genetic variation among devils. Optimization of the 
roads resistance surface assigned the greatest costs to devil move-
ment to highways and major roads, with minor roads and nonroad 
cells having relatively low costs to devil movement. Although two 
other variables—precipitation seasonality and elevation relief ratio—
had greater mean AICc support than geographic distance, they were 
poorly supported overall, being the top models in less than 7% of 
bootstrap iterations and having a mean ΔAICc > 2. No other land-
scape resistance model had mean ΔAICc < 2.

Among DFTD tumours, genetic variation was poorly explained 
by between-site landscape variables. Elevation and precipitation sea-
sonality both had mean ΔAIC < 2 and were the most frequent top 
models among bootstrap iterations. However, these models explained 
minimal genetic variation among tumours. Elevation was most the 
supported model (mean ΔAICc = 0; top model in 67.7% of bootstrap it-
erations) but explained only 1.5% of genetic variation among tumours. 
Precipitation seasonality was less supported (mean ΔAICc = 1.70; top 
model in 30.5% of bootstrap iterations) but explained slightly more 
genetic variation among tumours (mean mR2 = 0.03).

When analysing each tumour cluster separately, the top land-
scape resistance models differed among clusters but still explained 
relatively little genetic variation for each. For tumour cluster 1, ele-
vation relief ratio was the top model in 77.2% of bootstrap iterations, 
with annual precipitation being the top model in 11.5% of bootstrap 
iterations (mean ΔAICc = 1.48). However, all but two of the mod-
els for cluster 1 had a mean ΔAICc < 4, suggesting relatively weak 
support for the top models over the others. For tumour cluster 2, 
elevation was the top model in 77.6% of bootstrap iterations (mean 
ΔAICc = 0), with all other models poorly supported.

TA B L E  1   Results from the Evanno method showing relative 
support for STRUCTURE models of varying numbers of genetic 
clusters (K) in Tasmanian devils and DFTD. Optimal K was 
determined according to the model with the highest ΔK, together 
with assessment of mean natural logarithm of the probability of the 
data (Ln Pr(X|K), and is shown in bold typeface

K Reps
Mean Ln 
Pr(X|K)

Stdev 
LnP(K) ΔK

Devil

1 10 −1,025,607.12 4.90 -

2 10 −1,005,918.67 4.55 3,339.52

3 10 −1,001,419.28 9.87 180.47

4 10 −998,701.25 37.17 30.84

5 10 −997,129.52 2,514.96 -

Tumour

1 10 −93,561.09 0.31 -

2 10 −91,383.05 22.36 271.29

3 10 −95,270.47 6,058.33 1.40

4 10 −90,660.12 503.25 24.24

5 10 −98251.00 23,635.46 -
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     |  3225KOZAKIEWICZ Et Al.

F I G U R E  3   Population structure is evident in both Tasmanian devils (top) and DFTD (bottom). STRUCTURE genetic assignment 
probabilities are shown for K = 2, showing both full (right) and paired host–tumour (left) sets. Each column represents an individual devil 
or tumour sample, with genetic clusters indicated by colour, and the relative proportions of each colour represent a sample's relative 
probability of membership of each genetic cluster. Tumour cluster 1 is indicated in blue, and tumour cluster 2 is indicated in orange. Samples 
are arranged along the x-axis from west to east
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F I G U R E  4   Tests of Tasmanian devil 
and DFTD tumour costructuring, with 
logistic regression (A), suggesting that 
host genetic cluster assignment broadly 
predicts tumour genetic cluster, but with 
a Mantel test (B) showing no correlation 
between devil and tumour individual 
genetic distances (1 – DPS). Removal of 
left-tail outlier in panel B Mantel test 
produced negligible change in result
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3.3.2 | Isolation by environment: 
effects of environmental differentiation on genetic 
differentiation

Analysis of isolation-by-environment patterns using GDM did not iden-
tify any environmental differences among sample locations that were 
explanatory of genetic differentiation among devils (Table 3). The top 
model explained a reduction in deviance relative to the null model of 
11.87%, but contained only a significant effect of geographic distance, 

which explained just 1.84% of this reduction in model deviance. This 
suggests a weak effect of isolation by distance among devils.

Among all tumours, the top model explained a reduction in 
model deviance relative to the null model of 6.67% and contained 
significant effects of geographic distance and differences in eleva-
tion. Elevation predominated, explaining 99.95% of this reduction in 
model deviance, while the effect of geographic distance was non-
existent. This lack of an effect of geographic distance despite sta-
tistical significance was likely due to geographically distant animals 

TA B L E  2   Linear mixed-effect models with maximum-likelihood population effects testing the influence of landscape resistance variables 
on genetic differentiation in devils, tumours and tumour clusters 1 and 2. Model performance was evaluated by AICc averaged over 1,000 
bootstrap iterations, with models with ∆AICc < 2 highlighted. Marginal R2 (mR2) is the proportion of overall variation explained by the model 
fixed effects, and % top model is the percentage of times the model was the top-performing model over 1,000 bootstraps, as determined by 
AICc support

Variable K AICc ΔAICc mR2
% Top 
Model

Devils Roads 5 −7,364.67 0.00 0.379 38.4

Precip. seasonality 4 −7,359.56 4.66 0.269 1.7

Elevation relief ratio 4 −7,358.72 5.49 0.253 6.8

Temp. annual range 4 −7,357.35 6.87 0.255 0.0

Distance 2 −7,357.64 5.97 0.249 52.7

Elevation 4 −7,357.35 6.86 0.253 0.1

Annual precip. 4 −7,355.11 9.11 0.255 0.0

Land cover 13 −7,322.04 50.90 0.319 0.3

All tumours Elevation 4 −7,083.89 0.00 0.015 67.7

Precip. seasonality 4 −7,082.19 1.70 0.030 30.5

Annual precip. 4 −7,080.23 3.67 0.020 1.4

Elevation relief ratio 4 −7,072.25 11.64 0.012 0.3

Distance 2 −7,070.41 13.48 0.009 0.1

Temp. annual range 4 −7,069.27 14.62 0.006 0.0

Land cover 13 −7,067.75 16.14 0.024 0.0

Roads 5 −7,065.33 18.57 0.009 0.0

Tumour cluster 1 Elevation relief 
ratio

4 −7,627.07 0.00 0.026 77.2

Annual precip. 4 −7,625.59 1.48 0.019 11.5

Precip. seasonality 4 −7,624.56 2.51 0.016 4.6

Distance 2 −7,624.19 2.88 0.009 6.4

Elevation 4 −7,623.73 3.35 0.021 0.2

Temp. annual range 4 −7,623.67 3.40 0.009 0.0

Roads 5 −7,622.07 5.01 0.020 0.1

Land cover 13 −7,616.24 10.83 0.016 0.0

Tumour cluster 2 Elevation 4 −7,972.78 0.00 0.025 77.6

Annual precip. 4 −7,969.02 3.76 0.043 2.1

Elevation relief ratio 4 −7,967.41 5.37 0.044 10.3

Precip. seasonality 4 −7,965.74 7.04 0.024 8.6

Distance 2 −7,959.39 13.39 0.007 0.5

Roads 5 −7,958.98 13.80 0.047 0.9

Land cover 13 −7,957.66 15.12 0.053 0.0

Temp. annual range 4 −7,958.77 14.01 0.006 0.0
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being located in areas that differ in elevation, resulting in elevation 
explaining a high proportion of model deviance that would other-
wise be partly explained by geographic distance.

When analysing tumour clusters separately, the effect of eleva-
tion differences on genetic differentiation among tumours persisted 
only for tumour cluster 2, whose top model explained a 4.66% re-
duction in deviance relative to the null model. Elevation explained 
93.36% of this reduction in model deviance, whereas the effect of 
geographic distance was nonsignificant. None of the models for tu-
mour cluster 1 were significant upon permutation of environmental 
dissimilarity matrices, suggesting that none of the tested landscape 
variables, nor geographic distance, were influencing genetic differ-
entiation among tumours within this cluster.

Host genetic distances did not perform better than environ-
mental differences in explaining tumour genetic differentiation. In 
tumours for which the host devil was genotyped, host genetic dis-
tance was absent from the top model, which explained a reduction 
in model deviance relative to the top model of 5.50%. Elevation was 
the most important variable, explaining 44.81% of this reduction in 
model deviance, consistent with the all-tumour analysis.

4  | DISCUSSION

We conducted a comparative landscape genetics study of Tasmanian 
devils and DFTD to identify environmental factors driving IBR and 
IBE patterns in both host and pathogen. Our results warrant cau-
tion when inferring pathogen spread using host population genetic 
structure. Although we found evidence for broad-scale costructur-
ing between devils and tumours, the primary landscape processes 
influencing genetic variation appeared to differ between host and 
pathogen. In devils, we found two genetic clusters, consistent with 
previous studies (Storfer et al., 2017). Further, a relatively strong IBR 
pattern was present, whereby genetic variation was driven largely by 
major roads and highways acting as barriers to gene flow. However, 
evidence of IBE was absent in devils. Surprisingly, we found no geo-
graphic or temporal structure among two identified tumour clusters, 
suggesting coexistence of distinct tumour lineages throughout the 
study area for the entire sampling period. IBE in tumour cluster 2, 
although not particularly strong, was largely attributable to differ-
ences in elevation. Despite almost complete spatial overlap with 
cluster 2, tumour cluster 1 exhibited no evidence of IBE.

% deviance 
explained Variable

Variable 
significance (P)

% model 
deviance 
explained

Devils 11.87 Geographic distance 0.00 1.84

Elevation relief ratio — —

Elevation — —

Precip. seasonality 0.47 0.90

Annual precip. 0.08 7.64

Temp. annual range 0.25 3.17

All tumours 6.67 Geographic distance 0.00 0.00

Elevation relief ratio 0.99 0.00

Elevation 0.00 99.95

Precip. seasonality — —

Annual precip. — —

Temp. annual range — —

Tumours with 
matched host 
samples

5.50 Geographic distance 0.01 0.00

Elevation relief ratio 0.07 38.96

Elevation 0.03 44.81

Precip. seasonality — —

Annual precip. — —

Temp. annual range — —

Host genetic distance — —

Tumour cluster 1 No significant model

Tumour cluster 2 4.66 Geographic distance 0.11 0.00

Elevation relief ratio 0.47 7.07

Elevation 0.02 93.36

Precip. seasonality — —

Annual precip. — —

Temp. annual range — —

TA B L E  3   Summary of top generalized 
dissimilarity models explaining genetic 
distances in devils, all DFTD tumours and 
DFTD clusters separately. % deviance 
explained refers to the reduction in 
model deviance relative to the null. % 
model deviance explained refers to the 
per cent change in model deviance upon 
permutation of a given variable
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4.1 | Costructuring among Tasmanian 
devils and DFTD

In devils, we observed a clinal pattern of admixture between two 
genetic clusters from east to west across our study area. Previous 
broader-scale studies of devils have identified relatively discrete ge-
netic clusters, with a genetic discontinuity approximately overlap-
ping our study area that distinguishes northwest Tasmanian devils 
from other populations (Brüniche-Olsen et al., 2014; Hendricks 
et al., 2017; Jones, Paetkau, Geffen, & Moritz, 2004; Miller 
et al., 2011). Our study encompasses a relatively smaller geographic 
area at a higher sampling density than previous studies, and it is 
likely that the observed clinal pattern reflects admixture between 
the previously identified northwestern population and those further 
to the east.

We observed broad-scale genetic costructuring between in-
fected devils and their tumours, whereby devil genetic cluster as-
signment probabilities were predictive of the tumour cluster to 
which a given individual was host. However, there was no correlation 
between host and tumour genetic distances, suggesting that indi-
vidual-level tumour variation (i.e. within clusters) is not influenced 
by host gene flow and a lack of costructuring at a fine scale. Our 
inferred DFTD clusters had almost complete spatial overlap with one 
another, but we observed a higher prevalence of cluster 2 within 
Narawntapu National Park, our eastern-most collection site. Devils 
from this area showed almost complete assignment to a genetic 
cluster that was only present at admixture levels among other sam-
ples in this study (Figure 2), suggesting at least partial isolation of 
the Narawntapu population. Geographic isolation of Narawntapu, 
a coastal site surrounded by large water bodies and mountains, is 
further supported by documentation of a genetic distinct group of 
bare-nosed wombats (Vombatus ursinus) in this area (Martin, Carver, 
et al., 2019). Thus, we believe the observed broad-scale costructur-
ing is driven predominantly by geographic isolation of Narawntapu 
from the rest of our study area, rather than concordant patterns of 
gene flow.

Previous work has shown evidence of DFTD lineage replace-
ment based on karyotype (Hamede et al., 2015), which may affect 
the spatial structuring of tumours. For example, a tetraploid DFTD 
strain first arrived at West Pencil Pine (a portion of our study area) 
in 2006, and initially resulted in lower than typical prevalence 
and higher than typical survival rates among infected individuals 
(Hamede et al., 2012, 2015). Devil populations subsequently began 
to decline with the arrival of a diploid tumour strain, which outcom-
peted and replaced the tetraploid strain (Hamede et al., 2015). In 
contrast, we did not observe lineage replacement but rather cocir-
culation. However, we had insufficient data to test for differences 
in karyotype or virulence among our observed tumour strains, 
and the spatial scale of our study was considerably broader than 
that at which karyotypic partitioning was observed by Hamede 
et al. (2015) (within a 25-km2 area). As such, our results do not 
preclude the occurrence of lineage replacement at highly localized 
spatial scales.

4.2 | Isolation by resistance affects devils 
but not DFTD

Overall, IBR had a strong influence on genetic structure of devils 
but not tumours, supporting our hypothesis that tumour transmis-
sion among adult devils is less constrained by landscape than gene 
flow among juvenile dispersers. A significant negative effect of 
roads (predominantly highways and major roads) on gene flow was 
observed in devils, explaining 38% of genetic variation among our 
samples, compared to 25% of variation attributable to isolation by 
distance alone. Roads are a source of wildlife mortality due to vehi-
cle collision, including in devils (Grueber et al., 2017; Jones, 2000). 
Coupled with the loss of habitat associated with road construction, 
and fences and other structures, roads reduce structural and func-
tional landscape connectivity and often lead to decreased gene flow. 
Such responses to roads are well-documented and have been ob-
served in both small, sedentary species (Arens et al., 2007; Holzman 
et al., 2009) and large, wide-ranging species (Coulon et al., 2006; 
Epps et al., 2005), including carnivores (Kozakiewicz et al., 2019; 
Riley et al., 2006). However, use of minor roads as movement cor-
ridors has been observed in devils, likely due to greater ease of 
movement through cleared vegetation and an abundance of road-
killed carcasses for scavenging (Andersen, Johnson, Barmuta, & 
Jones, 2017). We found neither a positive nor a negative effect of 
minor roads on devil gene flow. However, our study was conducted 
over a much larger area than Andersen et al. (2017), with road use 
potentially occurring over only small distances without a significant 
effect on longer distance dispersal events.

Roads that form barriers to wildlife do not necessarily act sim-
ilarly as barriers to their pathogens—even those relying on direct 
transmission. For example, a major highway was found to produce 
strong population genetic structure in bobcats (Lynx rufus) but not 
in their directly transmitted viruses (Lee et al., 2012). Similarly, our 
results suggest that roads do not significantly influence DFTD trans-
mission. Roads are known to disproportionately affect juvenile dev-
ils, which exhibit higher mortality rates from vehicle collision than 
adults (Jones, 2000). Thus, roads likely present a greater barrier 
to dispersing juveniles, via which devil gene flow is primarily me-
diated, than to adults, via which DFTD transmission predominantly 
occurs. Overall, differentiation among tumours was not governed 
by any variation in connectivity due to landscape or environmental 
heterogeneity, with IBR patterns explaining barely more than 3% of 
tumour genetic variation. DFTD has spread across Tasmania very 
rapidly (Lazenby et al., 2018; McCallum et al., 2007), so it is not sur-
prising that tumour movement has been largely unconstrained by 
geography. Tumours can proliferate rapidly if even a single infected 
individual reaches a naive population after crossing a challenging 
landscape. By contrast, the same challenging landscape may facili-
tate only occasional dispersal by juveniles, which may not even re-
produce subsequently. Thus, although major roads constrain devil 
movements to the extent that devil population genetic structure is 
increased, even infrequent crossing of roads by DFTD-infected indi-
viduals is sufficient to sustain rapid DFTD spread.
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4.3 | Isolation by environment affects DFTD 
but not devils

Despite substantial topographic variation and a large rainfall gradi-
ent from east to west that produces dramatic variation in vegetation 
types and structure across Tasmania, we found no detectable IBE 
effect. This result is somewhat surprising because devil population 
densities vary throughout Tasmania concordant with habitat prefer-
ence for low-elevation dry eucalypt forest, with lower densities at 
high elevations and in areas of cool temperate rainforest (Jones & 
Barmuta, 2000). However, the relatively narrow geographic focus of 
our study likely did not capture a sufficient proportion of these en-
vironmental gradients (relative to range-wide variation) for IBE pat-
terns to be evident, with devils throughout our study area occupying 
(and preferring) relatively similar habitats.

In contrast to devils, we did detect evidence of IBE in tumours. 
Specifically, we found a significant positive correlation between ele-
vation difference and genetic distance of tumours. When analysing 
tumour clusters separately, we found that this effect was entirely 
driven by cluster 2, with genetic differentiation among cluster 1 lack-
ing any significant association with any tested environmental factor, 
including geographic distance. We believe this effect of elevation on 
genetic differentiation among cluster 2 is most likely a result of pop-
ulation structure that is coincident with an elevation gradient. As we 
discussed above, a large proportion of cluster 2 tumours were sam-
pled from Narawntapu National Park. Narawntapu is effectively at 
sea level, whereas the majority of tumours were sampled from devil 
populations in higher elevation areas. Thus, genetic differentiation 
among these groups owing to geographic isolation of Narawntapu 
tumours would be expected to produce an isolation-by-elevation ef-
fect. Although it is possible that some innate biological characteristic 
of the tumour may instead be driving this effect, the mechanism by 
which this would occur is unclear. Potentially, climatic differences 
(e.g. temperature, moisture) among high- and low-elevation areas 
could influence the ability of tumour cells to successfully implant in 
uninfected devils, driving local adaptation of tumours in these re-
gions, although this has yet to be demonstrated. Alternatively, differ-
ences in local landscape characteristics and thus devil densities may 
change the frequency of biting interactions among devils that in turn 
alters the DFTD transmission rate. However, existing studies of devil 
interactions provide no support for this explanation, with biting be-
haviours tied to interactions that devils seek out regardless of land-
scape structure (Hamede et al., 2009, 2013; Hamilton et al., 2019).

5  | CONCLUSIONS

Comparative landscape genetics studies facilitate identification 
of patterns of connectivity that are common to multiple species. 
However, use of host gene flow estimates as a proxy for pathogen 
transmission and spread can lead to erroneous conclusions in cases 
of incongruent host and pathogen genetic structure (Kozakiewicz 
et al., 2018; Mazé-Guilmo et al., 2016). We have shown that host 

population structure, and the landscape features that influence it, 
is decoupled from that of their pathogens. Roads, which were found 
to constrain devil gene flow significantly, were not associated with 
DFTD transmission, suggesting that genetic studies of devils are 
insufficient to infer or predict the spatial spread of tumours. This 
decoupling of host and pathogen likely occurred due to a mismatch 
between dispersal life stage and the stage at which devils typically 
carry and transmit DFTD. In other systems, external ecological fac-
tors such as multiple host/vector species or transmission via the 
environment are also known to mediate host–pathogen interactions 
(Näpflin et al., 2019; Witsenburg et al., 2015). Such ecological factors 
are amenable to inclusion in a comparative landscape genetics frame-
work, emphasizing the value of comparative landscape genetics stud-
ies in host–pathogen systems where the dynamics of host dispersal 
and pathogen transmission may differ. Examples include sarcoptic 
mange, which infects various mammal species and can be transmitted 
environmentally (Martin, Ricardo, et al., 2019; Niedringhaus, Brown, 
Sweeley, & Yabsley, 2019), or pathogens requiring arthropod vectors, 
such as Plasmodium spp. (malaria; Lo et al., 2017), whereby disease 
spread relies on multiple species and is strongly mediated by the en-
vironment (Hemming-Schroeder et al., 2018; Schwabl et al., 2017).

Despite the apparent decoupling of host and pathogen gene flow 
herein, host connectivity generally plays a significant role in wildlife 
disease dynamics. Higher connectivity among habitat patches and 
increased host movements increase rates of pathogen spread, prev-
alence and persistence in the landscape (Becker, Snedden, Altizer, & 
Hall, 2018; Wilber, Johnson, & Briggs, 2020). However, wildlife pop-
ulations themselves benefit similarly from increased connectivity, 
which is critical for maintaining genetic diversity and facilitating de-
mographic rescue (Brown & Kodric-Brown, 1977; Keyghobadi, 2007; 
Whiteley, Fitzpatrick, Funk, & Tallmon, 2015). Thus, management of 
the landscape to isolate and constrain the spread of disease must 
be balanced against the need to maintain genetic and demographic 
exchange among wildlife populations (McCallum & Dobson, 2002). 
In the light of increasing threats owing to habitat loss and wildlife 
disease globally (Haddad et al., 2015; Jones et al., 2008), this trade-
off has become a major conundrum for wildlife managers. Any in-
terventions should therefore proceed with caution and can benefit 
from comparative landscape genetics studies to help consider the 
impact of alternative management strategies.
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