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Disease-driven top predator decline 
affects mesopredator population genomic 
structure

Marc A. Beer1, Kirstin M. Proft    2, Anne Veillet3, Christopher P. Kozakiewicz4, 
David G. Hamilton    2, Rodrigo Hamede2,5, Hamish McCallum    6, 
Paul A. Hohenlohe    7, Christopher P. Burridge    2, Mark J. Margres8, 
Menna E. Jones    2 & Andrew Storfer    1 

Top predator declines are pervasive and often have dramatic effects on 
ecological communities via changes in food web dynamics, but their 
evolutionary consequences are virtually unknown. Tasmania’s top 
terrestrial predator, the Tasmanian devil, is declining due to a lethal 
transmissible cancer. Spotted-tailed quolls benefit via mesopredator 
release, and they alter their behaviour and resource use concomitant with 
devil declines and increased disease duration. Here, using a landscape 
community genomics framework to identify environmental drivers of 
population genomic structure and signatures of selection, we show that 
these biotic factors are consistently among the top variables explaining 
genomic structure of the quoll. Landscape resistance negatively correlates 
with devil density, suggesting that devil declines will increase quoll genetic 
subdivision over time, despite no change in quoll densities detected 
by camera trap studies. Devil density also contributes to signatures of 
selection in the quoll genome, including genes associated with muscle 
development and locomotion. Our results provide some of the first evidence 
of the evolutionary impacts of competition between a top predator and a 
mesopredator species in the context of a trophic cascade. As top predator 
declines are increasing globally, our framework can serve as a model for 
future studies of evolutionary impacts of altered ecological interactions.

Large carnivores are declining globally, resulting in dramatic changes 
within their ecological communities1,2. Changes in top predator densi-
ties often lead to changes in densities and/or behaviours of species at 
lower trophic levels, thus revealing the occurrence of trophic cascades3. 
Of particular concern is release of mesopredators, which can lead to 

secondary declines at lower trophic levels3–5. Whereas density-mediated 
and trait-mediated ecological effects involved in trophic cascades 
have been well-documented, little is known about the evolutionary 
consequences of these altered ecological interactions6. The large 
home ranges and dispersal capabilities of top predators mean that 
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agreement for K = 3 genetic clusters among our samples across Tas-
mania (Extended Data Fig. 1), with 98% of individuals sharing the same 
cluster of majority assignment in both methods (Fig. 2a and Extended 
Data Fig. 2a,b). The three genetic clusters were broadly oriented from 
east to west (Fig. 2a). Consistent with the broad results of the genetic 
clustering methods, an analysis of estimated effective migration sur-
faces (EEMS)29 identified a geographic region characterized by low 
effective migration (that is, a statistic reflecting both local effective 
population size as well as gene flow) separating the eastern and western 
halves of Tasmania (Extended Data Fig. 3). Spatial variation in effec-
tive migration was also evident throughout Tasmania (Extended Data  
Fig. 3), which evidences a genomic pattern of IBR. IBR occurs when 
environmental conditions on the landscape between locations impede 
or facilitate dispersal and consequent gene flow24.

Next, we used ResistanceGA30 to further evaluate evidence for 
IBR and quantify the extent to which specific environmental factors 
contribute to IBR. Specifically, we tested for IBR driven by combina-
tions of abiotic factors including climate, landcover classes, rivers and 
roads, as well as the biotic factor of devil density lagged by 5, 10, 15 and 
20 quoll generations prior to quoll sample collection (Extended Data 
Table 2), thereby allowing a lag time to detect an evolutionary response. 
Resulting models indicated the greatest support (that is, lowest mean 
Akaike information criterion with small sample size correction (AICc) 
across 10,000 bootstraps with 70/30% training/test data split) for a 
model containing landcover classes and temperature diurnal range 
(statistical performance of a subset of 10 models with the lowest mean 
AICc are plotted in Fig. 2c–e; the total set of 100 models is plotted in 
Extended Data Fig. 4); this model had the best (that is, lowest) AICc in 
90.93% of the bootstrap replicates and explained substantial variance 
in genetic distances among quolls (that is, marginal R2 = 64.36%). All 
other models had a mean ΔAICc > 2 relative to this model. A model 
containing temperature diurnal range and devil density lagged by 15 
generations had worse mean AICc support but had the best AICc in 
6.34% of bootstrap replicates; this model explained similar variance in 
genetic distances among quolls (marginal R2 = 66.61%) compared with 
the model with the lowest mean AICc. Notably, a model including devil 
density lagged by 10 quoll generations and mean annual temperature 
had the highest mean marginal R2 (67.7%), although it did not have the 
lowest mean AICc. In models containing devil density, devil density was 
negatively correlated with landscape resistance for the quoll (Extended 
Data Fig. 4).

The local environment affects population genomic structure
We also tested for IBE using partial redundancy analysis (pRDA)31 and 
generalized dissimilarity modelling (GDM) to determine whether 
at-location environmental conditions influence population genomic 
structure32. pRDA identified a significant effect of nine environmental 
factors on individual spatial genomic variation after accounting for 
geography and sampling date (adjusted R2 = 13.7%). These environmen-
tal factors included landcover classes, climate-related variables and 
generations diseased (Table 1). GDM revealed that geography and the 
environment together explained 55.9% of model deviance, with 14.5% 
attributable to the environment alone (Extended Data Fig. 5). Eight envi-
ronmental factors had significant effects on individual pairwise genetic 
distances in GDM, including temperature seasonality (P < 0.001), pre-
cipitation seasonality (P < 0.001) and generations diseased (P < 0.001; 
Table 2 and Extended Data Fig. 6). Notably, 1.44% of model deviance 
was explained by generations diseased alone (Extended Data Fig. 5), 
although this variable is moderately confounded with temperature 
seasonality and temperature diurnal range (Extended Data Fig. 7).

Evidence for selection driven by abiotic and biotic factors
Given that the pattern of IBE may reflect natural selection25, we also 
tested for signatures of divergent selection at individual SNPs using 
GEA analyses. GEA tests identified a total of 197 SNPs (5.7% of the total 

‘eco-evolutionary trophic cascades’7 and evolutionary feedbacks associ-
ated with other species interactions (for example, competition) should 
be studied at the landscape scale, but most studies at this scale focus 
on abiotic factors that impact gene flow and local adaptation8,9. To 
address this knowledge gap, an integrated approach that tests the 
combined effects of the abiotic and biotic environment on evolutionary 
processes—landscape community genomics10—is necessary.

Long-term data documenting the rapid decline of the Tasmanian 
devil (Sarcophilus harrisii; hereafter, the devil), Tasmania’s top terres-
trial predator, has provided a unique opportunity for eco-evolutionary 
study. Devil facial tumour disease (DFTD), a transmissible cancer, 
is nearly always fatal and has spread rapidly throughout Tasmania, 
causing dramatic devil declines11. The east-to-west spread of DFTD 
over 25 years has generated a gradient of reduction in devil densities 
superimposed on an abiotically heterogeneous landscape (Fig. 1a)11. 
Devil declines have revealed a trophic cascade involving density- and 
trait-mediated effects on several species, but the evolutionary effects 
remain unknown12–16. We focus on the spotted-tailed quoll (Dasyurus 
maculatus; hereafter, the quoll), a smaller (quolls: mean 1.7 kg females, 
3.2 kg males17,18; devils: mean 6.4 kg females, 8.4 kg males17,19), com-
petitively subordinate mesopredator that experiences mesopredator 
release characterized by shifts in ecological resource use and activity 
timing in association with devil declines (Fig. 1b)14,20. At pre-disease 
devil densities, devils and quolls exhibit partial dietary14,20,21 and sub-
stantial temporal15,22 niche partitioning indicative of interspecific 
competition, both of which become weaker following devil declines.

Devil populations typically remain at low densities following 
DFTD-mediated declines11, such that the quoll has experienced altered 
resource availability and behaviour for up to 25 generations, probably 
providing sufficient lag time to detect evolutionary effects of meso-
predator release23. We hypothesize that declines in devil density and 
the duration of DFTD presence (in quoll generations; hereafter, simply 
‘generations diseased’) will alter quoll population genomic structure 
mediated by increased resource availability and reduced interspecific 
competition. Quoll population genomic structure may increase due 
to reduced dispersal resulting from increased habitat quality, and 
individual single nucleotide polymorphisms (SNPs) may experience 
selection due to altered competition intensity. We employed a land-
scape community genomics approach to test these hypotheses by 
quantifying how both biotic and abiotic environmental factors affect 
population genomic structure and signatures of selection in quolls. 
Using a dataset of 345 individual quolls genotyped at 3,431 SNPs, we 
implemented three general approaches to address these goals: (1) tests 
for a population genomic pattern of isolation-by-resistance (IBR)24; (2) 
tests for a population genomic pattern of isolation-by-environment 
(IBE)25; and (3) landscape genomic tests for selection at individual 
SNPs based on genetic–environment associations (GEAs)26. Tests for 
IBR characterize how environmental conditions across the landscape 
between locations affect population genomic structure by impeding or 
facilitating gene flow (for example, certain environmental conditions 
may act as obstacles to dispersal between locations)24, whereas tests for 
IBE characterize how at-location environmental conditions influence 
population genomic structure as a consequence of selection against 
migrants from locations with different environmental conditions, or 
as a result of environmentally biased dispersal25. GEA tests identify 
significant associations between environmental conditions and allele 
frequencies at individual SNPs, thereby testing for genomic evidence 
of divergent selection (Fig. 1c).

Results
The environment between sites drives IBR
To understand the influence of the environment on quoll popula-
tion genomic structure, it is first necessary to identify the number 
of genetic clusters represented in the dataset. fastSTRUCTURE27 and 
discriminant analysis of principal components (DAPC)28 showed strong 
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analysed) as having significant signatures of divergent selection. Spe-
cifically, implementation of pRDA as a GEA test31 identified 92 SNPs with 
significant environmental associations while controlling for popu-
lation genomic structure and temporal variation in sampling. A test 
using latent factor mixed models (LFMM)33 identified 116 SNPs with 
significant environmental associations after accounting for population 
genomic structure, and 11 SNPs overlapped between the two meth-
ods. For both methods, the largest numbers of SNPs were detected in 
association with temperature seasonality, precipitation seasonality 
and annual precipitation (Extended Data Table 3). Most notably, devil 
density and generations diseased were associated with 12 and 10 SNPs, 
respectively, with no overlap.

Among the notable genes that mapped near SNPs associated with 
devil density, C2CD2 has been associated with gait speed and physical 
performance in humans34, and KLF5 has been associated with skeletal 
muscle development and bodyweight regulation35–37. In relation to 

generations diseased, the candidate gene CHL1 is associated with vary-
ing aspects of feeding behaviour38–40 and neuroplasticity41, TTC7A with 
feeding behaviour42, and KDM4A with fertility and litter size43. A com-
plete summary of candidate genes with significant abiotic and biotic 
environmental associations can be found in Supplementary Table 1.

Discussion
Using multiple complementary approaches, we show that declines in 
devil densities resulting from the spread of a lethal transmissible cancer 
have significant effects on evolutionary processes in the spotted-tailed 
quoll, a mesopredator and subordinate competitor. Previous work has 
shown that quolls benefit from mesopredator release via the decline 
of the competitively dominant devil14,15. Here, we included a time lag 
(in quoll generations) to test for an evolutionary response, and devil 
density and number of generations diseased were included in some 
top models explaining population genomic structure among quoll 
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Fig. 1 | Research context of the present study. a, Left: DFTD was first discovered 
in the northeastern corner of Tasmania in 1996 (black star) and subsequently 
spread westwards across the island (black isolines indicate year of DFTD arrival). 
Right: DFTD has caused dramatic declines in local devil densities4. b, Devil 
declines result in ecological change to the spotted-tailed quoll, a mesopredator. 
Left: Quoll carcass use increases as devil density decreases. Proportion of 
foraging duration was determined for high-devil and low-devil conditions based 
on n = 5 field study sites and n = 7 field study sites, respectively; data are reported 
as mean values and error bars indicate 95% confidence intervals16. Right: quoll 
activity timing shifts by 12 hours7. c, Trends identified in the present study 
based on genomic data include identification of significant contributions of 
devil density to IBR (left), generations diseased to IBE (middle), and both devil 

density and generations diseased to signatures of selection (GEAs; right). IBR 
describes how environmental conditions between locations impact gene flow; 
here, devil density and landscape resistance are negatively correlated (that 
is, gene flow relatively high between locations separated by regions of higher 
devil density). IBE describes how environmental conditions at sites impact 
population genomic structure between them; here, locations that differ by how 
many quoll generations DFTD has been present (generations diseased) are more 
genetically divergent than locations with similar values of generations diseased. 
GEA tests identify individual loci with allele frequencies highly correlated with 
environmental conditions, providing evidence of selection; here, we identified 
SNPs with significant associations between allele frequencies and both devil 
density and generations diseased.
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localities. Devil density and generations diseased were also signifi-
cantly correlated with allele frequencies at candidate loci putatively 
associated with predator avoidance and resource-use behaviour. Thus, 
disease-induced declines of Tasmania’s top predator contribute to 
patterns of gene flow and selection in the quoll, thereby providing 
novel evidence of the evolutionary impacts of altered competitive 
interactions occurring within the broader context of a trophic cascade.

Although our tests for a population genomic pattern of IBR 
suggest a dominant effect of landcover classes, devil density may 
also contribute to IBR as it explains the greatest variation in genetic 
distances among quolls and appears in a top model based on AICc 
in a non-negligible fraction of bootstrap replicates44. The negative 
relationship between devil density and landscape resistance in IBR 
models indicates that quolls disperse less through areas of low devil 
density, possibly because such areas offer reduced competition and 
less dispersal pressure. That is, devil declines probably increase habitat 

quality for quolls because both species are nocturnal predators and 
scavengers with relatively high dietary overlap20,21. Low devil density 
increases the amount of carrion available to quolls14 and simultane-
ously may reduce the chance of aggressive encounters between quolls 
and devils. Thus, dispersing quolls that encounter areas of low devil 
density and therefore low interspecific competition may not con-
tinue dispersing elsewhere, leading to low devil densities impeding 
gene flow and thereby increasing landscape resistance. Alternatively, 
telemetry data show that quoll and devil home ranges overlap at broad 
scales (88.4% overlap)22, although core home ranges with higher usage 
intensity overlap less extensively (40.5% overlap)22, probably because 
quolls prefer more forested or otherwise lower-visibility habitat than 
devils21. High devil densities probably occur where habitat is highly 
suitable for devils, and this habitat is probably highly suitable for 
quolls as well, given the broad overlap in the two species’ space use. 
Highly suitable habitat may be relatively permissive to quoll dispersal 

43

42

41

La
tit

ud
e 

(°
 S

)

145 146 147 148

Longitude (° E)

a

0.5
1.0
1.5
2.0
2.5

Gen10_devil
density
(no. km−2)

42.5

42.0

41.5

41.0

La
tit

ud
e 

(°
 S

)

145.0 145.5 146.0 146.5 147.0

Longitude (° E)

b

–54,000

–53,500

–53,000

AI
C

c

c

0

0.2

0.4

0.6

M
ar

gi
na

l R
2

d

TDR

Landcover

Gen10_devil

Gen15_devil

Gen20_devil

AP

MAT

Rivers

Geographic distance

987654321 10 11

Model

En
vi

ro
nm

en
ta

l f
ac

to
r

Inclusion
No
Yes

e
987654321 10 11

Model

987654321 10 11

Model

Fig. 2 | Population genomic structure of the spotted-tailed quoll across 
Tasmania. a, Map of fastSTRUCTURE ancestry proportions for all 345 individual 
quolls based on inference of three genetic clusters (that is, K = 3). Each individual 
is represented by a pie chart reflecting the proportion of ancestry assigned 
to each of the three genetic clusters. b, Individual fastSTRUCTURE ancestry 
proportions for the 189 individual quolls used in ResistanceGA plotted over 
devil density lagged by 10 generations. c–e, A subset of linear mixed-effects 
models with MLPE evaluating the contribution of abiotic and biotic variables to 
IBR, a spatial genomic pattern generated by environmental conditions between 
locations contributing to spatially variable resistance to gene flow across the 
landscape. Models are ordered left to right by increasing (worsening) average 

AICc based on 10,000 bootstrap replicates; that is, model 1 has the lowest AICc 
and is thus the best-performing model. c, Mean AICc of the ten models with the 
lowest AICc along with the null model of geographic distance. d, Marginal R2 of 
the top-ranking models. Marginal R2 is the proportion of variance in individual 
genetic distances explained by a resistance surface representing the composite 
of the indicated variables. e, Matrix indicating inclusion of environmental 
variables in models. Mean annual temperature (MAT), annual precipitation (AP), 
devil density lagged by 20, 15 and 10 quoll generations (Gen20_devil, Gen15_devil 
and Gen10_devil, respectively), landcover classes (TASVEG) and temperature 
diurnal range (TDR) are abbreviated in the matrix. Results for all 100 models are 
given in Extended Data Fig. 4.
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and consequent gene flow, which may partly explain the negative cor-
relation between quoll landscape resistance and devil density. Quolls 
may also avoid areas with high densities of feral cats, which increase in 
abundance concomitantly with declines of devils16, although we have 
little evidence for quoll–cat interactions. Interestingly, the marginal 
R2 achieved by the best-performing ResistanceGA model of IBR for 
quolls in our study (64.36%) is substantially higher than the marginal R2 
estimated in a study concerning IBR in Tasmanian devils (37.9%; driven 
largely by roads)45; this suggests that landscape resistance imposed by 
the environment may influence quoll gene flow more strongly than 
in its dominant competitor, although we note that the considerably 
greater spatial extent of our study may facilitate statistical detection 
of environmental drivers of genomic variation.

Our tests for a population genomic pattern of IBE indicate that 
quolls also disperse less among areas with differential local DFTD 
status, perhaps due to behavioural acclimation to a particular devil 
density. Although spatial avoidance between quolls and devils is 
weak22, there is niche partitioning in the timing of peak activity levels 
when devils are present at relatively high densities15,22. When dev-
ils decline due to DFTD, quolls shift their timing of peak activity by 
approximately 12 hours to encroach on what was previously the devil’s 
temporal niche15, which represents a substantial behavioural shift 
that may discourage dispersal of quolls between geographic areas 
with divergent DFTD status. That is, quolls that have acclimated to 
geographic areas highly affected by DFTD (which have relatively low 
devil densities) may be less likely to disperse into areas less affected 
by DFTD (which typically have higher devil densities) and vice versa. 
Although the statistically significant effect estimated for generations 
diseased (which uniquely explains 1.44% of deviance in our final GDM 
model) is small, it is comparable to the variance explained by individual 
abiotic environmental factors in other vagile mammalian carnivores 
(for example, statistically significant abiotic environmental drivers 
of IBE in the American badger each uniquely explain <1% of genetic 
variance)46. Indeed, our final models for pRDA and GDM returned 
estimates for genetic variance explained collectively by environmental 
factors (pRDA: adjusted R2 = 13.7%; GDM: deviance explained 14.5%) 
that are similar to other mesopredator species, including bobcats 
(23.6% of genetic variance explained by variation in landcover)47 and 
the American badger (8.15% of genetic variance explained collectively 
by topography and several abiotic environmental factors)46.

We also found evidence suggesting that devil density and genera-
tions diseased generate divergent selection among sampling localities. 
GEA tests identified 12 SNPs significantly associated with devil density 

and 10 non-overlapping SNPs associated with generations diseased, 
suggesting these biotic variables impose distinct selection pressures. 
A structural equation model documenting trophic cascades supports 
this result via detection of significant effects of generations diseased 
independently from effects of current devil densities14,16. The candidate 
genes C2CD2 and KLF5, found near SNPs associated with devil density in 
quolls, may reflect selection on physical performance associated with 
avoidance and escape of larger and behaviourally more dominant dev-
ils48. The candidate genes associated with generations diseased (that 
is, CHL1, TTC7A and KDM4A) are plausibly related to observed shifts in 
resource use and temporal activity of quolls driven by DFTD-induced 
devil declines14,15,20. The link between KDM4A and fertility43 may reflect 
sustained changes to local abundances of quolls resulting from 
improved resource availability in diseased devil populations14. How-
ever, previous quoll abundance surveys did not show a change in quoll 
abundances16, suggesting either (1) a transient population release that 
was later suppressed by competition with feral cats and avian species; 
or (2) a real population increase that was missed due to a lack of power 
to detect changes in quoll abundances via camera trap surveys. Notably, 
our results represent some of the first evidence for selection driven 
by indirect ecological interaction between a pathogen and a non-host 
taxon, a phenomenon that is expected to be widespread but difficult to 
study6. In addition to increasing evidence for selection resulting from 
direct interactions between species (for example, pathogen-imposed 
selection on hosts49; selection on predators associated with lethally 
toxic, novel pests50), we suggest that indirect ecological interactions 
may also broadly shape adaptive genomic variation in many species.

If devils and DFTD continue to coexist, models show that the local 
density of devils and prevalence of DFTD may cycle with a period of 
5–20 years51. Given the association between devil densities, DFTD and 
evolutionary forces in quolls, devil–DFTD population cycling may 
lead to repeated perturbation of quoll population genomic structure 
in the future. The evolutionary consequences of reduced gene flow 
among quoll populations may be increased population fragmenta-
tion and reduced genetic diversity52. Alternatively, reduced gene flow 
may facilitate local adaptation53 in cases where abiotic variables differ 
substantially among sites, such as precipitation at different altitudes 
across Tasmania.

Two caveats are worth noting. First, although multiple comple-
mentary analyses support the roles of spatiotemporal variation in devil 
density and generations diseased in explaining gene flow and selection 

Table 1 | pRDA variable importance for population genomic 
IBE

Variable d.f. Variance F Pa

Elevation 1 0.387768 41.95973 0.001

Temperature diurnal range 1 0.332409 35.96949 0.001

Local per cent scrub habitat 1 0.288372 31.20430 0.001

Annual precipitation 1 0.233579 25.27520 0.001

Local per cent salt marsh/wetland 1 0.186797 20.21297 0.001

Generations diseased (DFTD)b 1 0.156495 16.93413 0.001

Local per cent dry eucalypt forest 1 0.135097 14.61864 0.001

Local per cent moorland habitat 1 0.102877 11.13215 0.003

Temperature seasonality 1 0.043770 4.736290 0.028

Residual 332 3.068151 NAc NAc

aP values are based on an upper-tailed F-test. Significance testing was conducted on 
marginal terms at α = 0.05 after model selection. We did not apply a multiple test correction. 
bGenerations diseased refers to the number of quoll generations that DFTD has affected devils 
at a given time point and location. cThe residual term is not subject to significance testing.

Table 2 | GDM variable importance for population genomic 
IBE

Variable Importancea Pb

Temperature seasonality 10.11777 0

Precipitation seasonality 3.957330 0

Generations diseased (DFTD) 2.584018 0

Annual precipitation 1.432199 0.002

Geographic distance 1.027027 0

Local per cent eucalypt forest 1.016310 0.004

Local per cent rainforest 0.732745 0.010

Isothermality 0.608576 0.026

Local per cent human-modified habitat 0.315216 0.046
aImportance measures the per cent change in deviance explained by a model containing 
the observed data of all predictor variables and an equivalent model modified such that 
the predictor variable specified in a particular row of the table is represented by randomly 
permuted data. bThe P value of a given predictor variable indicates the proportion of 500 
models where randomly permuted predictor data outperformed the observed predictor 
data in terms of model deviance explained. That is, significance was determined using an 
upper-tailed permutation test of model deviance explained at α = 0.05. We did not apply a 
multiple test correction.
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among quoll populations, these analyses are correlative and thus our 
results should not be interpreted as resolving causal relationships 
between variables. Second, although restriction-site associated DNA 
sequencing (RADseq) is powerful for characterizing environmental 
drivers of population genomic structure by inexpensively genotyping 
large numbers of individuals at several thousand genetic markers, the 
method yields a low density of genetic markers across the genome 
with which to test for selection26,54. As genome sequencing continues 
to decrease in cost, future studies may employ increased genome 
coverage to better characterize the genomic architecture underlying 
quoll local adaptation.

Despite the clear promise of landscape community genomics 
for pursuing an integrated understanding of the eco-evolutionary 
impacts of species interactions, few empirical studies exist in the lit-
erature. Notable insights from such an approach that would otherwise 
go undescribed include, for example, that spatiotemporal variation 
in the biotic factor of DFTD is more important than abiotic factors 
in shaping patterns of adaptive genomic variation in devils49 and sig-
natures of selection in northern quolls associated with lethally toxic 
cane toads spreading across the Australian mainland50. Although one 
other study, to our knowledge, showed that an obligate mutualism 
between the ant species Atta texana and the fungi it cultivates affects 
the population genomic structure of the ant55, other studies found 
no evidence for relationships between the biotic environment and 
genomic variation56,57. The relative paucity of landscape community 
genomics studies can largely be attributed to logistical difficulties. 
While abiotic factors such as climatic variables are readily estimated 
using remote sensing, spatiotemporal variation in biotic factors such 
as species densities are considerably more difficult to characterize. 
Indeed, the analyses performed herein would have been impossible 
without 35 years of spatially continuous estimates of devil density and 
DFTD arrival times11.

Genetic studies of the evolutionary impacts of the changing abiotic 
environment, including climate and land use change, have informed 
conservation efforts aimed at maintaining genetic diversity and gene 
flow across the landscape8. However, the impacts of changes to biotic 
communities on evolutionary processes are poorly understood. Owing 
to climate change, land use change and emerging infectious diseases, 
numerous other species are expected to have experienced biotically 
mediated changes in ecological interactions1,2,58,59, with the evolution-
ary impacts of those changes remaining largely unstudied. We expect 
that our work will spearhead similar efforts in other systems and pro-
mote a greater bridging of ecology and evolution.

Methods
Sample collection and sequencing data processing
Ear biopsies were collected from 548 spotted-tailed quolls (Dasy-
urus maculatus; hereafter, the quoll) during ecological fieldwork. 
Quolls were caught in meat-baited traps made from polypropylene 
pipes also used for capturing Tasmanian devils (Sarcophilus harrisii; 
hereafter, the devil); details are described in ref. 60. All quolls caught 
were implanted with a subcutaneous microchip to allow individual 
identification and had a 3 mm biopsy (KAI MEDICAL) taken from the 
lower edge of their right ear. Samples span 15 generations (2004–
2019; quolls have a generation time of approximately 1 year) and are 
geographically widespread. Broad geographic areas were generally 
repeatedly sampled over time, resulting in little geographic bias in the 
timing of sampling (linear model of collection year regressed against 
latitude and longitude; adjusted R2 = 0.021, F = 0.4697, P < 0.01). Both 
quolls and devils are present in southwestern Tasmania, but rugged 
terrain makes the area largely inaccessible for fieldwork to collect 
samples; thus, southwestern Tasmania is not represented by samples 
in our dataset. Tissue sample collections were conducted in compli-
ance with University of Tasmania Animal Ethics Permits (A0008588, 
A0010296, A0011696, A0013326, A0015835, A0018223, A0016789) 

and the Tasmania Department of Natural Resources and Environment 
Animal Ethics Committee.

We used the SbfI restriction enzyme in a single-digest RADseq 
protocol61 to generate seven library pools of 96 samples each; 62 
samples were duplicated as technical replicates among library pools. 
A total of 548 unique individuals were sequenced. We size-selected 
for 400–500 bp fragments. All seven library pools were sequenced 
together on a single NovaSeq S4 lane at the University of Oregon GC3 
Facility using 150 bp paired-end sequencing. Sequencing generated a 
total of 6,122,805,452 raw reads. We trimmed the 2 bp from raw forward 
and reverse sequence reads using Cutadapt62. Next, we demultiplexed 
and cleaned the sequence data using the process_radtags module of 
Stacks v2.5263, with the r, c, q and bestrad options specified. A total of 
5,046,173,116 reads (82.42% of the total raw reads) were retained fol-
lowing demultiplexing and cleaning. We subsequently removed poly-
merase chain reaction duplicates using the Stacks clone_filter module.

We next aligned the processed sequence data to the Tasma-
nian devil reference genome mSarHar1.1164 using bwa-mem65 with 
default settings except a strengthened clipping penalty of 10. The 
devil and quoll belong to sister genera within the family Dasyuridae, 
suggesting that directly aligning sequence reads to the devil refer-
ence genome is a viable strategy for inferring RAD loci66. Supporting 
this expectation, processed sequence reads for each sample mapped 
robustly to the devil genome (mean proportion of reads aligning with 
MAPQ10 = 89.3%; s.d. = 2.5%); using the northern quoll (Dasyurus hal-
lucatus) genome only marginally increased the per-sample number of 
reads with MAPQ10 (mean change + 0.60%; s.d. = 0.78%). Furthermore, 
the devil reference genome has substantially higher contiguity (con-
tig N50 = 63.34 Mb; 445 contigs; 7 scaffolds) than the northern quoll 
genome (contig N50 = 91 kb; 479,471 contigs; 418,623 scaffolds), and 
thus the devil genome probably provides higher-quality positional 
information. After reference alignment, we removed unmapped reads 
and reads with MAPQ < 10 before inferring RAD loci using the gstacks 
module of Stacks.

We filtered the resulting dataset using the populations module 
of Stacks and VCFtools67. Specifically, we implemented an iterative 
filtering procedure that cycled and progressively strengthened sev-
eral missing data filters68; this process can produce a final dataset 
with higher-quality SNPs and a larger number of retained individuals 
than applying each filter only once at a stringent threshold69. The full 
filtering procedure is detailed in Extended Data Table 1. Although 
studies often remove SNPs that have high missing data in the global 
dataset, we sought to prevent spatiotemporal bias in missing data. 
Accordingly, we removed SNPs that had high missing data in at least 
one of nine spatiotemporal groups of samples. These spatiotemporal 
sample groups were determined by first distributing samples into 
three spatial groups based on Universal Transverse Mercator (UTM) 
zone 55S eastings; samples were assigned to spatial groups by dividing 
the range of observed eastings into three bins of equal width (that is, 
samples between 299,982 and 403,135 m; samples between 403,135 
and 506,288 m; and samples between 506,288 and 609,441 m). Next, 
samples within each of these three spatial groups were distributed 
into three temporal groups (leading to a total of nine spatiotemporal 
groups) by dividing the range of observed collection years into three 
bins of equal width (that is, samples from 2004 to 2009; 2009 to 2014; 
and 2014 to 2019). Samples lacking GPS coordinates were removed 
prior to iterative filtering. We did not remove individuals on the basis 
of relatedness, as there is little documented benefit of doing so, and 
consequences can include reduced statistical precision and power70,71.

The final dataset consisted of 3,431 SNPs and 345 individuals, a 
sample size that exceeds recommendations for landscape genom-
ics72. Individual sequencing depth averaged across SNPs was generally 
robust (mean = 40.80 reads per SNP; s.d. = 25.37; range = 8.22–162.98). 
SNP sequencing depth averaged across individuals was also gener-
ally high (mean = 41.95 reads per SNP per individual; s.d. = 16.83;  
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range = 19.38 – 551.87). Individual-level missing data were generally 
low (mean = 13.24%; s.d. = 13.29%; range = 2.36–49.99%) and positively 
skewed such that relatively few individuals had missing data rates near 
50% (50th percentile = 6.56%; 90th percentile = 35.95%). SNP-level miss-
ing data were also generally low (mean = 13.24%; s.d. = 4.92%; range =  
1.45–27.25%) but more symmetrically distributed around the mean 
(50th percentile = 13.04%; 90th percentile = 20.00%). In terms of the 
total genotype matrix (with dimensions equalling 345 individuals by 
3,431 SNPs), 13.24% of genotypes were missing.

Detection of population genetic structure
We inferred the number of genetic clusters represented in the dataset 
using fastSTRUCTURE27 and DAPC28. For fastSTRUCTURE, we tested 
K = 1–20 using 20 replicates each. We implemented DAPC using the R 
package adegenet73. We used the find.clusters function to determine 
the value of K, and we used the xVal method to determine the number of 
principal components to retain in the final analysis. Then, we selected 
the optimal value of K as that which maximized the marginal likelihood 
in fastSTRUCTURE and that which minimized the Bayesian information 
criterion in DAPC (Extended Data Fig. 1).

Environmental data processing
We carried out landscape genetics and genomics analyses to determine 
the extent to which heterogeneity in environmental factors relates to 
spatial patterns of population genomic structure. We collected data 
for ten abiotic variables: mean annual temperature, mean temperature 
diurnal range, isothermality, temperature seasonality, annual precipi-
tation, precipitation seasonality, elevation, roads, rivers and landcover 
type. Elevation, as well as temperature- and precipitation-related vari-
ables, was obtained from WorldClim v2 at 30-arcsec resolution74. Roads 
were downloaded from Geoscience Australia (ga.gov.au) and catego-
rized into principal, secondary and minor roads45. Roads are used for 
foraging and movement by the quoll75. We additionally downloaded 
watercourse data from Geoscience Australia and retained major and 
minor rivers. Landcover type was initially obtained from the TASVEG 
4.0 dataset76; raster cells were reclassified from the 150 raw, highly spe-
cific landcover classes into 11 broad landcover classes (Extended Data  
Table 2). Landcover type appears important for explaining the distribu-
tion and relative abundance of the quoll, which is moderately arboreal 
and prefers forest versus other landcover types13,21.

We additionally collected data for two biotic variables: devil den-
sity and the number of quoll generations DFTD has existed at a given 
location, a variable we refer to as ‘generations diseased.’ Devil density 
raster data for 1985–2019 were obtained directly from ref. 11, and the 
generations diseased variable was derived from the DFTD arrival year 
raster from ref. 11. Specifically, we calculated generations diseased 
as collection year of a given quoll sample minus year of DFTD arrival, 
with negative values converted to zeros. Although local devil den-
sity declines following DFTD arrival, devil density and generations 
diseased capture non-redundant information (Pearson’s |r| ≤ 0.58, 
depending on temporal lag of devil density used; Extended Data Fig. 7).  
Generations diseased may better capture community ecological 
changes associated with DFTD-driven devil declines (for example, 
shifts in local abundances of other species that have not been estimated 
island-wide)13,16. Indeed, devil density and duration of DFTD presence 
(here, ‘generations diseased’) have independent significant effects on 
the Tasmanian mammalian community16. See subsequent sections for 
details regarding further processing of environmental data for specific 
analyses, which is also summarized in Extended Data Table 2.

IBR
IBR has emerged in the landscape genetics literature as a framework 
for understanding the effects of environmental variation between 
sites (for example, barriers) on gene flow24. We used two approaches 
to evaluate IBR: EEMS29 and a landscape genetics circuit-theory-based 

approach. EEMS uses departures from IBD under a stepping-stone 
model to identify geographic areas of high or low effective migration29. 
We repeated the analysis using 250-, 500- and 1,000-deme lattices to 
evaluate consistency in the observed effective migration patterns.

We evaluated the contributions of specific environmental vari-
ables (described above and in Extended Data Table 2) to population 
genomic structure using a circuit-theory-based approach implemented 
in the R package ResistanceGA30. Briefly, ResistanceGA uses a genetic 
algorithm to optimize resistance surfaces by varying parameters defin-
ing the transformation relating values of environmental variables and 
landscape resistance to gene flow. Parameter values that maximize the 
correlation between the resulting pairwise resistance distances and 
observed pairwise genetic distances are taken as optimal. ResistanceGA 
provides objective parameterizations of resistance surfaces rather 
than relying on potentially flawed expert opinion. We optimized resist-
ance surfaces using random-walk commute times, which are equiva-
lent to resistance distances estimated using the circuit-theory-based 
approach implemented in Circuitscape77 while improving computa-
tional efficiency30. Briefly, circuit-theory-based approaches to IBR cal-
culate resistance distances by integrating over all possible paths joining 
a pair of sites or individuals on the resistance surface. In contrast, 
least-cost path modelling identifies a single optimal path and there-
fore invokes the biologically unrealistic assumption that individuals 
have complete knowledge of the landscape24. ResistanceGA regresses 
observed pairwise genetic distances against pairwise random-walk 
commute times resulting from resistance surface optimization using 
linear mixed-effects models with maximum-likelihood population 
effects (MLPE); MLPE accounts for non-independence among pairwise 
observations78. Simulations indicate that linear mixed-effects models 
with MLPE and ResistanceGA specifically perform well in recovering 
true resistance surfaces governing gene flow44,79. To characterize pair-
wise individual genetic distances, we used the propShared function in 
adegenet to calculate the proportion of shared alleles between indi-
viduals and subsequently calculated the pairwise individual genetic 
distance DPS

80
. DPS was calculated without imputing missing data.

Landscape genetics analyses can be misled when there are large 
gaps in sampling81, and we aimed to evaluate the extent to which differ-
ent temporal lags of spatially continuous devil density estimates impact 
population genomic structure among locations (precluding simulta-
neous use of highly temporally disparate samples). Therefore, we sub-
sampled our dataset to include 189 individuals from western-central 
Tasmania, which was more thoroughly sampled over the six-generation 
period of 2007–2012 (Fig. 2b). Landscape-level devil density estimates 
were averaged for years corresponding to 5-, 10-, 15- and 20-generation 
lags of the 189 samples; we incremented lags by five generations due 
to computational constraints associated with optimizing numerous 
models using ResistanceGA.

We optimized resistance surfaces representing different combi-
nations of environmental variables. We first optimized 14 univariate 
models, a full model containing all 14 variables and a model containing 
geographic distance alone. As the optimization procedure used by 
ResistanceGA is computationally expensive, we next limited the num-
ber of variable combinations to be optimized by removing six variables 
contributing <1% to the resistance surface defined in the full model. 
For the remaining eight variables, we optimized multivariate models 
containing all combinations of two (28 models) and three variables 
(56 models). Note that models containing environmental variables 
implicitly account for geographic distance because the transformation 
of environmental variables to resistance values ensures a minimum 
resistance value of one30. In total, 100 models were optimized. To 
conduct model selection, we used the function Resist.boot to perform 
pseudo-bootstrapping of the 100 models. We used 10,000 bootstrap 
iterations, retaining 70% of the data for training in each iteration. The 
model with the lowest average AICc across bootstraps was taken as 
the top model; any models within ΔAICc < 2 of the top model were 
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considered as having similar statistical performance. We also used the 
percentage of bootstrap replicates for which a model had the lowest 
AICc to consider evidence for alternative models that do not necessarily 
have the lowest mean AICc44.

IBE
IBE describes the circumstance in which environmental conditions 
at sites (that is, at sample locations) impact gene flow25. Environmen-
tal values associated with each sample coordinate were obtained as 
the mean value within a circular 6.26 km2 geodesic buffer zone, which 
approximates the average quoll home range size22. Geodesic buffer 
zones were generated using the geobuffer_pts function in the R package 
geobuffer82. We converted the TASVEG categorical landcover data into 11 
binary rasters using the r.reclass function in GRASS GIS83 before calculat-
ing the proportion of each buffer zone occupied by a given landcover 
type. To avoid testing an excessive number of environmental variables 
while also acknowledging the expectation for time lags between envi-
ronmental change and population genomic patterns23,84, we retained 
only the devil densities found at each site 5, 10 and 15 generations prior 
to sample collection. Road and river data were not used when testing for 
IBE, as they are linear features expected to contribute to IBR but not IBE.

We implemented two methods for evaluating IBE: pRDA and GDM. 
pRDA is an ordination approach analogous to linear regression, which 
can be used to associate variables representing genetic variation with 
the environment while removing the effects of non-focal variables 
such as geography31. Prior to carrying out pRDA, we carried out spa-
tial principal component analysis (sPCA) using the spca function in 
the R package adegenet73. We used a distance-based connection net-
work with the maximum distance specified as 50% of the maximum 
observed distance between samples to account for the expectation 
that quolls are unlikely to disperse across the entire study area while 
still ensuring robust connectivity among nodes in the network. Missing 
data were imputed by the spca function using mean-value imputa-
tion. From the sPCA, we obtained spatially lagged scores of the first 
two global (positive) structures, which were subsequently used as 
the response variables in pRDA46,47. We implemented pRDA using the 
rda and ordiR2step functions in the R package vegan85. Specifically, 
we included the environmental factors as explanatory variables and 
included a conditioning matrix based on geographic coordinates and 
collection date as a decimal-formatted year; this conditioning matrix 
served to account for geography and the possibility of a signature of 
genetic drift or unobserved variable confounding the generations 
diseased variable across the 15 generations of sampling. We defined 
an initial model using all environmental factors and calculated vari-
ance inflation factors (VIFs) to evaluate multicollinearity; specifically, 
we calculated VIFs, removed the factor with the maximum VIF and 
recalculated VIFs until all retained variables had VIF < 10. Ultimately, 
all retained variables had VIF < 10 except for longitude (VIF = 11.46), 
and we opted to retain this variable because it represents geography 
and has its effects removed prior to estimating environmental effects. 
We used the ordiR2step function using 10,000 permutations to carry 
out forward variable selection; we defined the search scope based on 
a null model containing only the conditioning matrix and a full model 
containing the conditioning matrix plus all retained environmental 
factors. We performed significance testing of marginal terms using 
the function anova.cca and calculated adjusted R2 using RsquareAdj.

We used the R package gdm86 to carry out GDM. GDM fits regres-
sion models to test for associations between pairwise genetic distances 
(here, DPS) and environmental distances, while accommodating nonlin-
ear relationships using spline functions32. As described previously, we 
calculated DPS without imputing missing data. We evaluated Pearson’s 
correlation coefficients between each pair of environmental variables. 
For each pair of variables with r > 0.80, one variable was removed. We 
used 500 matrix permutations and backward elimination to evaluate 
significance of environmental factors. We identified the top model as 

the one including geographic distance and only the environmental 
factors with significant effects; this corresponded to a model contain-
ing the fewest terms with little change in deviance explained relative 
to the full model45.

Tests for selection and candidate gene identification
We carried out two GEA analyses to identify SNPs with significant 
signatures of divergent selection: redundancy analysis (RDA)31 and 
LFMM33. RDA has relatively high power and low false positive rate 
under a variety of demographic scenarios and selection strengths31,87. 
Although RDA can attain high power and low false positive rate when 
employed singly, inclusion of environmental factors that are not truly 
selective pressures in analysis can inflate the false positive rate; this can 
be remedied by overlapping detected SNPs with another GEA test, such 
as LFMM, at the expense of power87. Given that our study is exploratory 
(that is, there is little existing understanding of environmental factors 
contributing to spatially varying selection in the quoll), we employed 
both RDA and LFMM. Neither RDA nor LFMM permit missing data, so 
we imputed missing genotypes using the snmf function from the R 
package LEA88. Using K = 3, we ran 50 replicate runs and retained the 
run with the highest genotype prediction accuracy, as determined by 
minimum cross entropy, as the imputed genotype matrix.

With respect to RDA, we initially fitted a model containing all 
environmental factors processed for the IBE analyses and accounted 
for population genetic structure using a conditioning matrix contain-
ing individual PC1 and PC2 scores obtained using adegenet (that is, we 
employed pRDA). We also included collection year in this conditioning 
matrix because the estimation of the generations diseased variable 
is partially confounded with time of sample collection (see ‘Environ-
mental data processing’). After fitting the initial model, we removed 
covariates showing excessive collinearity by evaluating VIFs; we aimed 
to remove covariates one at a time until all remaining covariates had 
VIF < 10. Ultimately, all retained variables had VIF < 10 except for PC1 
scores, which had a VIF of 14.86. We opted to retain PC1 despite its 
high VIF because it represents the main axis of population genomic 
structure, which is necessary to control for in GEA analyses. PC1 was 
specified in the conditioning matrix, so its effects are removed prior 
to estimation of environmental effects; this should tend to reduce the 
effect sizes of collinear environmental factors and thus lead to more 
conservative results regarding GEAs than if PC1 had been removed. 
We used a q value of 0.01 as our threshold for significance to detect 
outliers in RDA space. To identify the individual environmental factor 
that each outlier is most strongly associated with, we regressed indi-
vidual genotypes at outlier SNPs against each environmental factor in 
binomial models, recording the environmental factor producing the 
highest McFadden’s pseudo-R2 (ref. 89). Note that previous implemen-
tations of this follow-up procedure have used simple linear models87, 
which are not strictly appropriate for population or individual allele 
frequencies90. In the present study, binomial and simple linear models 
identified the same environmental factor for 77.2% of outlier SNPs; we 
presented results for the binomial models.

We implemented LFMM 2 using the R package lfmm33. LFMM uses 
several latent factors (equal to the K genetic clusters represented in the 
data; herein, K = 3 latent factors) to account for population genomic 
structure when testing for associations between alleles and environ-
mental factors. We used the function lfmm_test to output a P value 
for each SNP; we used the function qvalue in the R package qvalue to 
estimate q values based on P values. SNPs with q values < 0.01 were 
identified as being significantly associated with environmental vari-
ation. We subsequently identified genes nearest each significant SNP 
using the bedtools closest command91.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Data availability
Raw sequence data and sample metadata necessary for reproducing 
the study have been deposited at NCBI under BioProject PRJNA922561 
and BioSamples SAMN32664143–32664814. Any other relevant data 
can be found within the article and its  Supplementary Information.

Code availability
Scripts for running analyses underlying this study’s results are  
publicly available in a GitHub repository (https://github.com/
marcabeer/stquoll_landscape_genomics).
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Extended Data Fig. 1 | Relative support for different values of K. Optimal K was determined by a) maximum marginal likelihood in FastStructure and b) minimum 
BIC in DAPC. Error bars in A indicate standard error across replicates.
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Extended Data Fig. 2 | Population genomic structure across Tasmania. a) FastStructure results for K = 3. b) DAPC results for K = 3. c, d) FastStructure results for 
K = 4-5. Each individual is represented by a pie chart reflecting the proportion of ancestry assigned to each genetic cluster.
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Extended Data Fig. 3 | EEMS plots of effective migration rates. Effective migration rate surfaces were determined for a) 250-, b) 500-, and c) 1000-deme lattices. 
Color indicates regions where effective migration is higher (blue) or lower (orange) than expected under a model of isolation by distance.
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Extended Data Fig. 4 | All 100 linear mixed effects models with maximum 
likelihood population effects evaluating the contribution of abiotic and 
biotic variables to isolation-by-resistance. a–c) Models ordered left-to-right 
by increasing (worsening) AICc. d–f) Models ordered left-to-right by decreasing 
(worsening) marginal R-squared left to right. A, D) Average AICc of models based 
on 10,000 bootstrap replicates. B, E) Average marginal R-squared of models. 
Marginal R-squared is the proportion of variance in pairwise individual genetic 

distances explained by a resistance surface representing the composite of the 
indicated variables. C, F) Matrix indicating inclusion of environmental variables 
in each model. Isothermality (IT), TS (temperature seasonality), mean annual 
temperature (MAT), annual precipitation (AP), devil density lagged by 20, 15, 10, 
and 5 quoll generations (for example, Gen20_devil), landcover classes (TASVEG) 
and temperature diurnal range (TDR) are abbreviated in the matrix.
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Extended Data Fig. 5 | Partitioning of model deviance in GDM. a) Percentages 
of total model deviance attributable to different factors, with individual 
environmental factors collapsed into climate, landcover, and generations 
diseased (DFTD). b) Percentages of deviance explained attributable to individual 
environmental factors and geography. Percentages in parentheses indicate 

contributions to total model deviance. Some explained deviance cannot 
be attributed uniquely to geography versus the environment (Geog-Env 
confound) or can be attributed uniquely to the environment but not individual 
environmental factors (Env. Confound).
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Extended Data Fig. 6 | GDM splines relating pairwise genetic distance to pairwise environmental differences. Environmental factors were centered and scaled by 
standard deviation to enable plotting on the same axes.
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Extended Data Fig. 7 | Pearson’s correlation coefficients for pairs of environmental factors. Numbers indicate the value of Pearson’s correlation coefficient for a 
pair of environmental factors. Blue colours indicate positive values and red colours indicate negative values of Pearson’s correlation coefficient.
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Extended Data Table 1 | Iterative filtering of spotted-tailed quoll genomic data

† Individual missingness refers to the removal of individuals that have a missing genotype rate higher than the specified value. ‡ Spatiotemporal SNP missingness refers to the removal of a SNP 
when its missing data rate exceeds the specified value in at least one of nine spatiotemporal groups of samples (see Materials and Methods).
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Extended Data Table 2 | Environmental factors considered for analyses

† Abbreviations are shared with other tables and figures. ‡ Used in final analysis after removing factors based on VIFs or pairwise Pearson correlation coefficients.
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Extended Data Table 3 | Numbers of SNPs detected as significantly associated with environmental factors using pRDA and 
LFMM

Bottom peripheral cells indicate the total number of significant SNPs detected using either pRDA or LFMM. Right-hand peripheral cells indicate the total number of significant SNPs detected 
by pRDA and LFMM for a given environmental factor. The bottom right cell indicates the total number of significant SNPs detected by pRDA and LFMM across all environmental factors. Totals 
are not universally the sum of adjacent cells because significant SNPs overlapped across methods and environmental factors.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used in data collection.

Data analysis Software used in data analysis are described in detail, with associated references, in the Methods section. No custom algorithms or software 
were used in the research. Sequence data were processed using a combination of Cutadapt 4.2, Stacks v2.52,and BWA 0.7.17 to generate SNP 
genotypes. SNP genotypes were filtered for quality using VCFTools. Environmental data were processed in R 4.1, and QGIS 3.16.14 with GRASS 
7.8.5. The analyses DAPC, ResistanceGA, sPCA, pRDA, GDM, and LFMM were conducted in R 4.1 using packages described in the Methods. 
Figures were created using ggplot2 in R 4.1 and Inkscape 1.1. The analysis FastStructure used version 1.0, and the analysis EEMS used version 
1.0. Code underlying analyses has been deposited in a GitHub repository (https://github.com/marcabeer/stquoll_landscape_genomics).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
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Sequence data and sample metadata necessary for reproducing the study have been deposited at NCBI under BioProject PRJNA922561 (https://
dataview.ncbi.nlm.nih.gov/object/PRJNA922561?reviewer=k665j7vuqj8hum6io4jklkki48) and BioSamples SAMN32664143—32664814. Note that this link is a 
temporary reviewer link and full public access will be granted following publication. Any other relevant data can be found within the article and its supplementary 
information.
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(for example, race or ethnicity should not be used as a proxy for socioeconomic status).  
Provide clear definitions of the relevant terms used, how they were provided (by the participants/respondents, the 
researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or 
administrative data, social media data, etc.) 
Please provide details about how you controlled for confounding variables in your analyses.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study 
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and 
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This study concerns the population genetics of the spotted-tailed quoll (Dasyurus maculatus) across Tasmania, Australia. Our data are 
quantitative and analyses typically used regression modeling methods to understand how environmental factors impact genetic 
variation in the study species.

Research sample The initial dataset consisted of 548 unique samples of the spotted tailed quoll (Dasyurus maculatus), which were collected 2004—
2019 across Tasmania, Australia. Samples were geographically and temporally widespread to capture the distribution of abiotic and 
biotic environmental conditions encountered by the study species. The final dataset consisted of 345 samples that were similarly 
geographically widespread as the initial dataset and spanned 2004—2017.

Sampling strategy Sample size was not predetermined, as samples were collected opportunistically several years prior to conception of the study. 
Samples best conform to a random spatial sampling procedure, as samples are geographically widespread and represent a range of 
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environmental conditions. The final dataset containing 345 geographically widespread samples exceeds recommendations based on 
landscape genomics simulations, which show that ≥200 samples are typically sufficient to achieve high statistical power (Selmoni et 
al., 2020; https://doi.org/10.1111/1755-0998.13095). 

Data collection Tissue samples were collected by the University of Tasmania and the Department of Natural Resources and Environment Tasmania. 
Individuals were caught in baited pipe traps. All individuals caught were implanted with a subcutaneous microchip to allow individual 
identification and had a 3mm biopsy (Kai Medical TM) taken from the lower edge of their right ear. Staff involved in sample collection 
were blind to the study hypothesis because this study was conceived several years after sample collection.

Timing and spatial scale Sample collection dates spanned 2004—2019, with the final dataset spanning 2004—2017. All years except for 2015, which was not 
sampled, were represented by ≥2 samples; the mean number of samples for a given year was 24.6 samples (S.D. = 17.8 samples; max 
= 60 samples in 2012). Samples spanned the island of Tasmania, Australia, as depicted in Figure 2A. The mean distance between 
samples was 121km (S.D. = 91km; max = 373km).

Data exclusions Genotype data were filtered to remove single nucleotide polymorphisms (SNPs) with high missing data across samples, as well as to 
remove samples with high missing data across SNPs. Samples lacking specific geographic coordinates or collection dates were also 
excluded following genotyping. This procedure, including missing data thresholds, is described in Extended Data Table 1. Missing data 
thresholds were predetermined such that they resulted in a final, nominal missing data rate of <50% on a per-SNP and per-sample 
basis, which is typical in the field of landscape genomics.

Reproducibility Analyses characterized by stochasticity were repeated multiple times to ensure reliability, as described in the Methods.

Randomization Randomization was not relevant to the study, as we applied analyses uniformly to the entire sample set.

Blinding Blinding was not relevant to the study, as we applied analyses uniformly to the entire sample set.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions Field conditions were not recorded during field work. General location and when possible, specific geographic coordinates were 
recorded.

Location Sampling was conducted across the island of Tasmania, Australia. There were numerous (>300) unique geographic coordinates for 
samples, which are provided in the repository to which our data have been deposited.

Access & import/export Field collections occurred across the island of Tasmania, Australia, at numerous locations. We complied with University of Tasmania 
Animal Ethics Permits (A0008588, A0010296, A0011696, A0013326, A0015835, A0018223, A0016789), as described in the Methods.

Disturbance Individuals were captured in baited pipe traps that did not cause physical harm. Tissue samples were collected as 3mm ear biopsies 
to cause minimal damage to the individual. Individuals were released following implantation of a subcutaneous microchip and tissue 
collection. Handling procedures took 5-10min. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals The study did not involve laboratory animals.

Wild animals The study involved temporary capture of individual spotted-tailed quolls (Dasyurus maculatus) across Tasmania, Australia. Individuals 
were released following microchipping and tissue sample collection on-site.

Reporting on sex Findings apply to both sexes, as they were analysed together throughout the study. The initial 548 individuals included 330 males, 
160 females, and 182 individuals of unknown sex. The final dataset of 345 individuals included 213 males, 101 females, and 31 
individuals of unknown sex. Population genetic analyses do not typically stratify samples by sex.

Field-collected samples Individuals were not taken into the laboratory. Samples were collected in the form of preserved tissue biopsies.

Ethics oversight Ethics oversight was provided by the University of Tasmania Animal Ethics and the Tasmania Department of Natural Resources and 
Environment Ethics Committees. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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